Переделка компьютерного блока питания по схеме итальянца. Из компьютерного atx лабораторный блок питания - схемы - каталог статей - ремонт компьютеров и радиотехники. Переделка выходной части

Компьютер служит нам годами, становится настоящим другом семьи, и когда он устаревает или безнадёжно ломается, бывает так жалко нести его на свалку. Но существуют детали, которые могут ещё долго прослужить в быту. Это и

многочисленные кулеры, и радиатор процессора, и даже сам корпус. Но самое ценное - это БП. благодаря пристойной мощности при малых габаритах, является идеальным объектом всяческих модернизаций. Его трансформация - не такая уж сложная задача.

Переделка компьютерного в обычный источник напряжения

Нужно определиться какого типа блок питания вашего компьютера, АТ или АТХ. Как правило, это указывается на корпусе. Импульсные БП работают только под нагрузкой. Но устройство блока питания типа АТХ позволяет замыканием зелёного и чёрного проводов искусственно её имитировать. Итак, подключив нагрузку (для АТ) или замкнув необходимые выводы (для АТХ), можно запустить вентилятор. На выходе появляется 5 и 12 Вольт. Максимальный выходной ток зависит от мощности БП. При 200 Вт, на пятивольтовом выходе, ток может достигать порядка 20А, на 12В - около 8А. Так без лишних затрат можно пользоваться хорошим с неплохими выходными характеристиками.

Переделка компьютерного блока питания в регулируемый источник напряжения

Иметь такой БП дома или на работе довольно удобно. Изменить стандартный блок несложно. Нужно заменить несколько сопротивлений и выпаять дроссель. При этом величину напряжения можно регулировать от 0 до 20 Вольт. Естественно, токи останутся в первоначальных пропорциях. Если же вас устраивает максимальное напряжение в 12В, достаточно на его выходе установить тиристорный регулятор напряжения. Схема регулятора очень проста. При этом он поможет избежать вмешательства во внутреннюю часть компьютерного блока.

Переделка компьютерного блока питания в зарядное устройство для автомобиля

Принцип мало чем отличается от регулируемого источника питания. Только желательно поменять на более мощные. Зарядное устройство из БП компьютера имеет ряд преимуществ и недостатков. К плюсам в первую очередь относят малые габариты и небольшой вес. Трансформаторное ЗУ намного тяжелее и неудобней в эксплуатации. Недостатки тоже существенны: критичность к коротким замыканиям и переполюсовке.

Конечно, эта критичность наблюдается и в трансформаторных устройствах, но при выходе из строя импульсного блока переменный ток с напряжением 220В стремится к аккумулятору. Страшно представить последствия этого для всех приборов и находящихся рядом людей. Применение в блоках питания защит решает эту проблему.

Перед использованием такого зарядного устройства, серьёзно отнеситесь к изготовлению схемы защиты. Тем более что существует большое количество их разновидностей.

Итак, не спешите выбрасывать запчасти от старого девайса. Переделка компьютерного блока питания подарит ему вторую жизнь. При работе с БП помните, что его плата постоянно находится под напряжением 220В, а это представляет смертельную угрозу. Соблюдайте правила личной безопасности при работе с электрическим током.

Здравствуйте, сейчас я расскажу о переделке ATX блока питания модели codegen 300w 200xa в лабораторный блок питания с регулировкой напряжения от 0 до 24 Вольт, и ограничением тока от 0,1 А до 5 Ампер. Выложу схему, которая у меня получилась, может кто чего улучшит или добавит. Выглядит сама коробка вот так, хотя наклейка, может быть синей или другого цвета.

Причем платы моделей 200xa и 300x почти одинаковы. Под самой платой есть надпись CG-13C, может быть CG-13A. Возможно, есть другие модели похожие на эту, но с другими надписями.

Выпаивание ненужных деталей

Изначально схема выглядела вот так:

Нужно убрать всё лишнее, провода atx разъёма, отпаять и смотать ненужные обмотки на групповом дросселе стабилизации. Под дросселем на плате, где написано +12 вольт ту обмотку и оставляем, остальные сматываем. Отпаять косу от платы (основного силового трансформатора), не в коем случае не откусывайте её. Снять радиатор вместе с диодами Шоттки, а после того как уберём все лишнее, будет выглядеть вот так:

Конечная схема после переделки, будет выглядеть вот так:

В общем выпаиваем все провода, детали.

Делаем шунт

Делаем шунт, с которого будем снимать напряжение. Смысл шунта в том, что падение напряжения на нём, говорит ШИМ-у о том, как нагружен по току - выход БП. Например сопротивление шунта у нас получилось 0,05 (Ом), если измерить напряжение на шунте в момент прохождения 10 А то напряжение на нём будет:

U=I*R = 10*0,05 = 0,5 (Вольт)

Про манганиновый шунт писать не буду, поскольку его не покупал и у меня его нет, использовал две дорожки на самой плате, замыкаем дорожки на плате как на фото, для получения шунта. Понятное дело, что лучше использовать манганиновый, но и так работает более чем нормально.

Ставим дроссель L2 (если есть) после шунта

Вообще их рассчитывать надо, но если что - на форуме где-то проскакивала программа по расчету дросселей.

Подаём общий минус на ШИМ

Можно не подавать, если он уже звонится на 7 ноге ШИМ. Просто на некоторых платах на 7 выводе не было общего минуса после выпайки деталей (почему - не знаю, мог ошибаться, что не было:)

Припаиваем к 16 выводу ШИМ провод

Припаиваем к 16 выводу ШИМ - провод, и данный провод подаём на 1 и 5 ножку LM358

Между 1 ножкой ШИМ и выходом плюс, припаиваем резистор

Данный резистор будет ограничивать напряжение выдаваемое БП. Этот резистор и R60 образует делитель напряжения, который будет делить выходное напряжение и подавать его на 1 ножку.

Входы ОУ(ШИМ) на 1-й и 2-й ножках у нас служат для задачи выходного напряжения.

На 2-ю ножку приходит задача по выходному напряжению БП, поскольку на вторую ножку максимально может прийти 5 вольт (vref) то обратное напряжение должно приходить на 1-ю ножку тоже не больше 5 вольт. Для этого нам и нужен делитель напряжения из 2х резисторов, R60 и тот что мы установим с выхода БП на 1 ногу.


Как это работает: допустим переменным резистором выставили на вторую ногу ШИМ 2,5 Вольта, тогда ШИМ будет выдавать такие импульсы (повышать выходное напряжение с выхода БП) пока на 1 ногу ОУ не придёт 2,5 (вольта). Допустим если этого резистора не будет, блок питания выйдет на максимальное напряжение, потому как нет обратной связи с выхода БП. Номинал резистора 18,5 кОм.

Устанавливаем на выход БП конденсаторы и нагрузочный резистор

Нагрузочный резистор можно поставить от 470 до 600 Ом 2 Ватта. Конденсаторы по 500 мкф на напряжение 35 вольт. Конденсаторов с требуемым напряжением у меня не было, поставил по 2 последовательно по 16 вольт 1000 мкф. Припаиваем конденсаторы между 15-3 и 2-3 ногами ШИМ.

Припаиваем диодную сборку

Ставим диодную сборку ту, что и стояла 16С20C или 12C20C, данная диодная сборка рассчитана на 16 ампер (12 ампер соответственно), и 200 вольт обратного пикового напряжения. Диодная сборка 20C40 нам не подойдет - не думайте её ставить - она сгорит (проверено:)).

Если у вас есть какие либо другие диодные сборки смотрите чтоб обратное пиковое напряжение было минимум 100 В ну и на ток, какой по больше. Обычные диоды не подойдут - они сгорят, это ультро-быстрые диоды, как раз для импульсного блока питания.

Ставим перемычку для питания ШИМ

Поскольку мы убрали кусок схемы который отвечал за подачу питания на ШИМ PSON, нам надо запитать ШИМ от дежурного блока питания 18 В. Собственно, устанавливаем перемычку вместо транзистора Q6.

Припаиваем выход блока питания +

Затем разрезаем общий минус который идёт на корпус. Делаем так, чтоб общий минус не касался корпуса, иначе закоротив плюс, с корпусом БП, всё сгорит.

Припаиваем провода, общий минус и +5 Вольт, выход дежурки БП

Данное напряжение будем использовать для питания вольт-амперметра.

Припаиваем провода, общий минус и +18 вольт к вентилятору

Данный провод через резистор 58 Ом будем использовать для питания вентилятора. Причём вентилятор нужно развернуть так, чтоб он дул на радиатор.

Припаиваем провод от косы трансформатора на общий минус

Припаиваем 2 провода от шунта для ОУ LM358

Припаиваем провода, а также резисторы к ним. Данные провода пойдут на ОУ LM357 через резисторы 47 Ом.

Припаиваем провод к 4 ножке ШИМ

При положительном +5 Вольт напряжении на данном входе ШИМ, идёт ограничение предела регулирования на выходах С1 и С2, в данном случае с увеличением на входе DT идёт увеличение коэффициента заполнения на С1 и С2 (нужно смотреть как транзисторы на выходе подключены). Одним словом - останов выхода БП. Данный 4-й вход ШИМ (подадим туда +5 В) будем использовать для остановки выхода БП в случае КЗ (выше 4,5 А) на выходе.

Собираем схему усиления тока и защиты от КЗ

Внимание: это не полная версия - подробности, в том числе фотографии процесса переделки, смотрите на форуме.

Обсудить статью ЛАБОРАТОРНЫЙ БП С ЗАЩИТОЙ ИЗ ОБЫЧНОГО КОМПЬЮТЕРНОГО

Если у вас дома есть старый блок питания от компьютера (ATX), то не стоит его выбрасывать. Ведь из него можно сделать отличный блок питания для домашних или лабораторных целей. Доработка потребуется минимальная и в конце вы получите почти универсальный источник питания с рядом фиксированных напряжений.

Компьютерные блоки питания обладают большой нагрузочной способностью, высокой стабилизацией и защитой от короткого замыкания.


Я взял вот такой блок. У всех есть такая табличка с рядом выходных напряжений и максимальным током нагрузки. Основные напряжения для постоянной работы 3,3 В; 5 В; 12 В. Есть ещё выходы, которые могут быть использованы на небольшой ток, это минус 5 В и минус 12 В. Так же можно получить разность напряжений: к примеру, если подключится в к «+5» и «+12», то вы получите напряжение 7 В. Если подключиться к «+3,3» и «+5», то получите 1,7 В. И так далее… Так что линейка напряжений намного больше, чем может показаться с разу.

Распиновка выходов блока питания компьютера


Цветовой стандарт, в принципе, един. И эта схема цветовых подключений на 99 процентов подойдет и вам. Может что-то добавиться или удалиться, но конечно все не критично.

Переделка началась

Что нам понадобиться?
  • - Клеммы винтовые.
  • - Резисторы мощностью 10 Вт и сопротивлением 10 Ом (можно попробовать 20 Ом). Мы будем использовать составные из двух пятиватных резисторов.
  • - Трубка термоусадочная.
  • - Пара светодиодов с гасящими резисторами на 330 Ом.
  • - Переключатели. Один для сети, второй для управления

Схема доработки блока питания компьютера


Тут все просто, так что не бойтесь. Первое что нужно сделать, так это разобрать между собой и соединить провода по цветам. Затем, согласно схемы подключить светодиоды. Первый слева будет индицировать наличие питания на выходе после включения. А второй справа будет гореть всегда, пока сетевое напряжение присутствует на блоке.
Подключить переключатель. Он будет запускать основную схему, замыканием зеленого провода на общий. И выключать блок при размыкании.
Также, в зависимости от марки блока, вам понадобится повесить нагрузочный резистор на 5-20 Ом между общим выходом и плюсом пять вольт, иначе блок может не запуститься из-за встроенной защиты. Так же если не заработает, будьте готовы повесить такие резисторы на все напряжения: «+3,3», «+12». Но обычно хватает одного резистора на выход 5 Вольт.

Начнем

Снимаем верхнюю крышку кожуха.
Откусываем разъемы питания, идущие к материнской плате компьютера и другим устройствам.
Распутываем провода по цветам.
Сверлим отверстия в задней стенке под клеммы. Для точности сначала проходим тонким сверлом, а затем толстым под размер клеммы.
Будьте осторожны, не насыпьте металлическую стружку на плату блока питания.


Вставляем клеммы и затягиваем.


Складываем черные провода, это будет общий, и зачищаем. Затем залуживаем паяльником, одеваем термоусадочную трубку. Припаиваем к клемме и надев трубку на спайку – обдуваем термофеном.


Так делаем со всеми проводами. Которые не планируете использовать – откусите под корень у платы.
Также сверлим отверстия по тумблер и светодиоды.


Устанавливаем и фиксируем горячим клеем светодиоды. Припаиваем по схеме.


Нагрузочные резисторы ставим на монтажную платы и привинчиваем винтами.
Закрываем крышку. Включаем и проверяем ваш новый лабораторный блок питания.


Не лишним будет замерить выходное напряжение на выходе каждой клеммы. Чтобы быть уверенным, что ваш старый блок питания вполне работоспособен и выходные напряжения не вышли за пределы допустимых.


Как вы могли заметить, я использовал два переключателя – один есть в схеме, и он запускает работу блока. А второй, который побольше, двухполюсный – коммутирует входное напряжение 220 В на вход блока. Его можно не ставить.
Так что друзья, собирайте свой блок и пользуйтесь на здоровье.

Смотрите видео изготовления лабораторного блока своими руками

Обычно для переделки компьютерных блоков питания используют блоки ATX, собранные на микросхемах TL494 (KA7500), но в последнее время такие блоки не попадаются. Их стали собирать на более специализированных микросхемах, на которых сложнее сделать регулировку тока и напряжения с нуля. По этой причине был взят для доработки старый блок типа AT на 200W, который был в наличии.

Этапы переделки

1. Вмонтирована плата зарядного устройства от мобильного телефона Nokia AC-12E с доработкой. В принципе можно использовать и другие зарядные устройства.


Доработка заключалась в перемотке III обмотки трансформатора и установке дополнительного диода и конденсатора. После переделки блок стал выдавать напряжения +8V для питания вентилятора и вольтметра-амперметра и +20V для питания микросхемы управления TL494N.


2. С платы блока AT выпаяны детали самозапуска первичной цепи и цепи регулировки выходного напряжения. Также были удалены все вторичные выпрямители.


Выходной выпрямитель переделан по мостовой схеме. Использованы три диодных сборки MBR20100CT. Дроссель перемотан - диаметр кольца 27 мм, 50 витков в 2 провода ПЭЛ 1 мм. В качестве нелинейной нагрузки применена лампа накаливания 26V 0,12A. С ней напряжение и ток хорошо регулируются от нуля.
Для обеспечения устойчивой работы микросхемы изменены цепи коррекции. Для грубой и точной регулировок напряжения и тока применено особое подключение потенциометров. Такое подключение позволяет плавно изменять напряжение и ток в любом месте при любом положении потенциометра грубой регулировки.

Особого внимания требует шунт, провода для регулировки и измерения должны подключатся непосредственно к его выводам, так как напряжение, снимаемое с него невелико. На схеме эти подключения показаны фиолетовыми стрелками. Измеряемое напряжение для цепи регулирования снимается с делителя с коррекцией для устранения самовозбуждения в цепях управления.
Верхний предел установки напряжения подбираются резисторами R38, R39 и R40. Верхний предел установки тока подбирается резистором R13.


3. Для измерения тока и напряжения применен вольтметр-амперметр


За основу взята схема «Суперпростой амперметр и вольтметр на супердоступных деталях (автовыбор диапазона)» от Eddy71 .
В схему введена регулировка баланса ОУ при измерении тока, что позволило резко улучшить линейность. На схеме это потенциометр «Баланс ОУ», напряжение с которого поступает на прямой или инверсный входы (подбирается, куда подключить, на схеме обозначено зелеными линиями).
Автоматический выбор диапазона измерения реализован программно. Первый диапазон до 9,99A с указанием сотых долей, второй до 12A с указанием десятых долей ампера.


4. Программа для микроконтроллера написана на СИ (mikroC PRO for PIC)и снабжена комментариями.

Конструкция и детали

Конструктивно все элементы размещены в корпусе блока AT. Плата зарядного устройства закреплена на радиаторе с силовыми транзисторами. Сетевые разъемы убраны и на их месте установлен выключатель и выходные зажимы. Сбоку на крышке блока находятся резисторы установки напряжения и тока и индикатор вольтметра-амперметра. Закреплены они на фальшпанели с внутренней стороны крышки.

Чертежи выполнены в программе Frontplatten-Designer 1.0. Междукаскадный трансформатор блока AT не переделывается. Выходной трансформатор блока AT тоже не переделывается, просто средний отвод, выходящий из катушки, отпаивается от платы и изолируется. Выпрямительные диоды заменены на новые, указанные в схеме.
Шунт взят от неисправного тестера и закреплен на изоляционных стойках на радиаторе с диодами. Плата для вольтметра-амперметра использована от «Суперпростого амперметра и вольтметра на супердоступных деталях (автовыбор диапазона)» от Eddy71 с последующей доработкой (перерезаны дорожки, согласно схемы).

Замеченные особенности недостатки

В качестве базового блока использован блок AT 200 W. К сожалению, он имеет довольно маленький радиатор для силовых транзисторов. При этом вентилятор подключен к напряжению 8 Вольт (для уменьшения создаваемого шума), поэтому токи больше 6 – 7 Ампер, снимать можно только кратковременно, во избежание перегрева транзисторов.

Файлы

Файлы схем, плат, чертежей и исходники и прошивка
🕗 10/01/13 ⚖️ 70,3 Kb ⇣ 521

Регулируемый блок питания из блока питания компьютера ATX

Если у Вас есть ненужный блок питания от компьютера ATX, то его можно легко превратить в лабораторный импульсный регулируемый блок питания, с регулировкой не только напряжения, но и тока, а это значит, что его можно использовать, например, для зарядки или восстановления аккумуляторов .

Блок питания имеет следующие параметры:

  • Напряжение - регулируемое, от 1 до 24В
  • Ток - регулируемый, от 0 до 10А
Возможны и другие пределы регулировки, по Вашей необходимости.

Для переделки подойдёт любой блок питания ATX, собранный на ШИМ-контроллере TL494. Часто в блоках питания применяется аналог этой микросхемы - KA7500.


Схемы большинства блоков питания похожи, и даже если Вы не смогли найти схему конкретно Вашего - ничего страшного. Первостепенная задача - выпаять из платы вторичные цепи после силового трансформатора, а также цепи, управляющие работой микросхемы TL494. На схеме ниже эти участки подсвечены красным. Перед выпаиванием пометьте выводы вторичной обмотки силового трансформатора по шине 12 вольт. Они нам понадобятся.


Нажмите на схему для увеличения
При этом на плате освободится много места. Печатные дорожки также можно удалить, проведя по ним нагретым паяльником. Некоторые печатные дорожки, идущие от выводов микросхемы, которые мы задействуем в дальнейшем, можно оставить для удобства и припаиваться к ним.


Теперь необходимо собрать новые выходные цепи и цепи регулировки тока и напряжения. К помеченным ранее обмоткам трансформатора шины 12 вольт необходимо припаять сборку двух диодов Шоттки с общим катодом. Сборку можно взять с шины +5В, обычно она имеет следующие параметры: напряжение - 30В, ток - 20А. Диоды Шоттки имеют очень малое падение напряжения, что в данном случае немаловажно. При данном типе выпрямителя можно питать большинство нагрузок.

Если же вам необходим большой ток на максимальном напряжении, данного варианта недостаточно. В этом случае необходимо убрать среднюю точку трансформатора, а выпрямитель сделать из четырёх диодов по классической схеме.

Затем необходимо намотать дроссель. Для этого необходимо взять выпаянный дроссель групповой стабилизации и смотать с него все обмотки. Сердечник дросселя имеет жёлтый цвет, одна сторона с торца покрашена белым. На это кольцо необходимо намотать 20 витков двемя проводами диаметром 1мм впараллель. Если такой толстой проволоки нет, то можно соединить вместе несколько жил более тонкой проволоки и намотать ими параллельно. При такой намотке все выводы на обоих концах обмотки необходимо залудить и соединить. Дроссель с такими параметрами обеспечит ток около 3А. Если нужен больший ток, то дроссель следует намотать десятью параллельными проводами диаметром 0,5мм.


После этого можно приступать к сборке той части схемы, которая отвечает за регулировки. Авторство этого метода принадлежит пользователю DWD, ссылка на тему с обсуждением:

http://pro-radio.ru/power/849/

Регулировка работает очень просто. Рассмотрим цепь регулировки напряжения. На вход компаратора (вывод 1) микросхемы TL494 подключен делитель напряжения на двух резисторах. Напряжение на их средней точке должно быть равно приблизительно 4.95 вольтам. Если Вы хотите изменить верхний предел регулировки напряжения блока питания, необходимо пересчитать именно этот делитель. Второй вход компаратора (вывод 2) подключен к средней точке переменного резистора, таким образом здесь также получается делитель напряжения. Если напряжение на выводе 1 компаратора будет меньше напряжения на выводе 2, то микросхема будет увеличивать ширину импульсов, пока напряжения не уравняются. Таким образом и осуществляется регулировка выходного напряжения блока питания.

Регулировка тока работает аналогично, только здесь для контроля протекающего в нагрузке тока используется падение напряжения на шунте Rш. В качестве шунта может быть использован практически любой шунт сопротивлением 0.01-0.05 Ом, например - участок токопроводящей дорожки, шунт от миллиамперметра или несколько SMD-резисторов. Верхний предел регулировки задаётся подстроечным резистором сопротивлением 1кОм. Если подстройка верхнего предела не нужна, то этот резистор следует заменить постоянным сопротивлением 270 Ом, что обеспечит регулировку до 10А.

Фото блока питания приведено ниже. На передней панели расположен экран ампервольтметра, под которым находятся ручки регуляторов напряжения и тока. Выходные клеммы выполнены из гнёзд RCA, приклееных изнутри эпоксидкой. К таким клеммам очень удобно цеплять зажимы типа крокодил. Большой жёлтый светодиод является индикатором включения блока питания, которое осуществляется большим красным переключателем.


В виду того, что корпус для блока питания выбран очень компактный (16*12см), монтаж получился плотный с обилием проводов. В будущем провода можно собрать в жгуты.


Для охлаждения блока питания применён термостат на микросхеме К157УД1, который охлаждает сборку выпрямительных диодов Шоттки и включается по мере надобности автоматически, затем выключается. О его конструкции будет рассказано отдельно.