Встраиваемый ампер-вольтметр на PIC12F675 и LED-индикаторах. Вольтамперметр на микроконтроллере в лабораторный бп Автомобильный вольтметр на pic16f676

Когда появилась необходимость в измерительной части для лабораторного БП, рассматривая различные схемы из Интернета, сразу остановил выбор на семи сегментных LED индикаторах (возможная альтернатива - индикаторы типа 0802, 1602 - дороги и плохо читаемы). Так же, не хотелось каких либо переключений - и ток, и напряжение должны считываться в любой момент времени. По разным причинам, найденные готовые решения не устроили и я решил сконструировать свою схему.

Предлагаемое устройство предназначено для применения совместно с различными блоками питания и позволяет измерять напряжение в пределах от 0 до 99.9 Вольт с точностью 0.1 Вольт и ток потребления в пределах от 0 до 9.99 Ампер с точностью 0.01 ампер. Устройство собрано на дешевом микроконтроллере PIC12F675, как самом недорогом и распространенном из имеющих 10-разрядный АЦП, двух регистрах 74HC595 и двух 4-х или 3-х разрядных LED индикаторах. Общая стоимость примененных деталей, на мой взгляд, минимальна для подобных конструкций с одновременной индикацией напряжения и тока.

Описание работы схемы.

Напряжение высвечивается индикатором HL1, а ток - индикатором HL2. Одноименные сегментные выводы индикаторов объединены попарно и подключены к параллельным выходам регистра DD2, общие выводы разрядов подключены к регистру DD3. Регистры соединены последовательно и образуют 16-разрядный сдвиговый регистр, управляемый по трем проводам: выводы 11 - тактовые, 14 - информационный, а по перепаду на выводе 12 информация записывается в выходные защелки. Индикация обычная динамическая - через выходы регистра DD3 последовательно перебираются общие выводы индикаторов, а с выходов DD2 через токоограничительные резисторы R12-R19 включаются соответствующие выбранному разряду сегменты. Индикаторы могут быть как с общим анодом, так и с общим катодом (но оба одинаковые).

Микроконтроллер управляет индикацией по выводам GP2, GP4, GP5 в прерываниях от таймера TMR0 c интервалом 2 мс. Входы GP0 и GP1 используются соответственно для измерения напряжения и тока. В первых трех разрядах индикаторов высвечиваются собственно измеряемые значения, а в последнем разряде: в верхнем индикаторе - знак "V", а в нижнем - знак "A". В случае применения 3-х разрядных индикаторов эти знаки наносятся на корпус прибора. Никаких изменений программы в этом случае не требуется.

Измеряемое напряжение поступает на МК через делитель R1-R3, а ток - с выхода ОУ LM358 через резистор R10, который совместно с внутренним защитным диодом защищает вход МК от возможной перегрузки (ОУ питается напряжением +7..+15 Вольт). Коэффициент усиления ОУ задается делителем R5-R7, примерно равн 50 и регулируется подстроечным резистором R5. ФНЧ R4C2 сглаживает напряжение с шунта. Каждое измерение производится в течении всего 100 мкс. и без этой цепочки показания прибора будут "прыгать" при любой неравномерности измеряемого тока (а он редко когда бывает строго постоянным). Для тех же целей служит и конденсатор C1 в цепи измерения напряжения. Стабилитрон D1 защищает вход ОУ от перенапряжения в случае обрыва шунта.

Особо следует остановиться на цепочке R8,R9. Она задает дополнительное смещение примерно 0.25 милливольт на вход ОУ. Дело в том, что без нее имеется существенная нелинейность коэффициента усиления ОУ при низких значениях измеряемого тока (менее 0.3 А). На разных экземплярах микросхем этот эффект проявляется в разной степени, но погрешность при выше обозначенных значениях измеряемого тока слишком высока в любом случае. При установке R8 и R9 указанных на схеме значений (номиналы могут быть пропорционально изменены при сохранении того же соотношения, например 15 Ом и 300 кОм) погрешность измерения тока, обусловленная этим эффектом, не превышает единицы младшего разряда. Со всеми имеющимися у меня экземплярами микросхем, никакого подбора указанных резисторов не потребовалось. В общем случае, подбирается минимальное сопротивление R9, при котором на индикаторе еще светятся нули при отсутствии измеряемого тока, и увеличивается в 1.5-2 раза. Интересно, что среди многих подобных конструкций, где применяется та же микросхема, ни в одной статье нет и намека на данную проблему. Видимо, у меня одного оказались "неправильные" ОУ (приобретенные, кстати, в разное время в течении 10 лет). В любом случае, я категорически не рекомендую в целях "упрощения конструкции" исключать из схемы обычно отсутствующие в подобных схемах элементы C1,C2,R3,R8,R9 - это все-таки измерительный прибор, а не мигающая цифрами игрушка!

Хорошая точность и стабильность показаний, кроме того, обеспечивается полным "отделением" от микроконтроллера относительно сильноточных импульсных цепей управления индикаторами путем питания каждой цепи от отдельного стабилизатора 78L05. И даже слабые помехи от работы самого микроконтроллера мало влияют на результат, так как каждое измерение производится в режиме "SLEEP" с "заглушенным" тактовым генератором.

Микроконтроллер тактируется от внутреннего генератора для экономии выводов. Вход сброса через цепь R11,C3 подключен к "чистой" +5В. При включении-выключении БП, в котором используется конструкция, возможны значительные помехи, поэтому, для исключения "зависания" программы, включен таймер WDT.

Питается устройство от любого стабилизированного напряжения 7-15 Вольт (не больше 15В!), через стабилизаторы DA2, DA3. Конденсаторы C4-C8 - стандартные блокировочные. Для обеспечения низкой погрешности при токах, близких к верхнему пределу, напряжение питания ОУ должно быть как минимум на 2 Вольта больше напряжения микроконтроллера, поэтому питание на него берется до стабилизаторов.

Устройство собрано на печатной плате размерами 57 на 62 миллиметра.

Печатная плата устройства.

Для уменьшения габаритов платы, большая часть резисторов и конденсаторов применена в SMD корпусе типоразмера 0802. Исключениями являются: R1 - из-за рассеиваемой мощности, R12 - для упрощения топологии платы, электролитические конденсаторы и подстроечные резисторы. Конденсаторы C1 и C2 применены керамические, но в случае отсутствия таковых, их можно заменить электролитическими танталовыми. Стабилитрон - любой, с напряжением стабилизации 3-4.7 Вольт. Индикаторы можно заменить на FIT3641 или трехразрядные серий 3631 или 4031 без изменения рисунка платы. В случае необходимости, возможно даже применение без изменения рисунка более крупных индикаторов типа 5641 и 5631 (в этом случае микроконтроллер впаивается без колодки напрямую, подстроечные резисторы применяются малогабаритные, индикатор впаивается поверх микросхем, сточив четыре выступа снизу по углам индикатора). Для подключения устройства к внешним цепям применены винтовые зажимы. Часто возникающая проблема с изготовлением измерительного шунта решена путем применения готового шунта предела 10А от неисправного мультиметра серии D83x, абсолютно без всякой переделки. На мой взгляд, это оптимальный вариант - неисправный китайский мультиметр, думаю, найдется у многих радиолюбителей. В крайнем случае, его можно изготовить из нихромовой (а лучше из константановой) проволоки.

Выход блока питания подключается к точке "Ux" и далее, с той же точки в нагрузку. Общий провод подается в точку "COM", а в нагрузку уже подается с точки "COM-Out". При таком подключении, напряжение на индикаторе завышается на 0.1 Вольт при максимальном токе нагрузки. Программным способом эта погрешность уменьшена в два раза до половины погрешности дискретизации (0.05В максимум). Во избежание увеличения этой погрешности, следует выбирать такое сопротивление шунта, при котором не требуется при настройке изменять номиналы схемы (примерно 7-14 мОм). Подходящее напряжение питания на устройство подается на вывод "Upp".

Фотографии готового устройства

Программа микроконтроллера написана на Ассемблере в среде MPASM. Для обоих видов индикаторов программа одна за исключением одной директивы. В начале исходного текста программы (файл AV-meter.asm) в директиве “ANODE EQU 0” параметр имеет значение 0, что соответствует работе с индикаторами с общим катодом. Для применения индикаторов с общим анодом следует изменить значение этого параметра на 1, после чего заново оттранслировать программу. Так же, прилагаются готовые прошивки для микроконтроллера как для индикаторов с общим анодом, так и с общим катодом. При загрузке HEX-файла в программы типа , или , слово конфигурации загружается автоматически.

Настройка схемы предельно проста. Подав на вход напряжение, близкое к максимальному, подстроечником R2 следует выставить на верхнем индикаторе требуемое значение. Потом, подключают на выход устройства резистор 0.5-2 Ома в качества нагрузки и регулировкой напряжения устанавливают ток, близкий к максимальному. Подстроечником R5 выставляют соответствующие образцовому амперметру показания на нижнем индикаторе.

Во вложенном файле представлены прошивки, исходный код, модель и плата .

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DD1 МК PIC 8-бит

PIC12F675

1 В блокнот
DD2, DD3 Сдвиговый регистр

CD74HC595

2 В блокнот
DA1 Операционный усилитель

LM358N

1 В блокнот
DA2, DA3 Линейный регулятор

L78L05

2 В блокнот
D1 Стабилитрон

1N4734A

1 3.6-4.7 В В блокнот
HL1, HL2 Индикатор FYQ3641 2 FIT3641 В блокнот
C1, C2 Конденсатор 4.7 мкФ 2 SMD 0805 В блокнот
C3 Конденсатор 10 нФ 1 SMD 0805 В блокнот
C4 100мкФ х 10В 1 В блокнот
C5, C7 Конденсатор 100 нФ 2 SMD 0805 В блокнот
C6, C8 Электролитический конденсатор 20мкФ х 16В 2 В блокнот
R1 Резистор

39 кОм

1 0.5 Ватт В блокнот
R2, R5 Резистор подстроечный

1 кОм

2 В блокнот
R3 Резистор

1.2 кОм

1 SMD 0805 В блокнот
R4 Резистор

3 кОм

1 SMD 0805 В блокнот
R6 Резистор

1.5 кОм

1 SMD 0805 В блокнот
R7 Резистор

100 кОм

1 SMD 0805 В блокнот
R8 Резистор

150 Ом

1 SMD 0805 В блокнот
R9 Резистор

Прошлым летом по просьбе знакомого разработал схему цифрового вольтметра и амперметра. В соответствии с просьбой данный измерительный прибор должен быть экономичный. Поэтому в качестве индикаторов для вывода информации был выбран однострочный жидкокристаллический дисплей. Вообще этот ампервольтметр предназначался для контроля разрядки автомобильного аккумулятора. А разряжался аккумулятор на двигатель небольшого водяного насоса. Насос качал воду через фильтр и опять возвращал ее по камушкам в небольшой прудик на даче.

Вообще в подробности этой причуды я не вникал. Не так давно этот вольтметр опять попал ко мне у руки для доработки программы. Все работает как положено, но есть еще одна просьба, чтобы установить светодиод индикации работы микроконтроллера. Дело в том, что однажды, из-за дефекта печатной платы, пропало питание микроконтроллера, естественно функционировать он перестал, а так как ЖК-дисплей имеет свой контроллер, то данные, загруженные в него ранее, напряжение на аккумуляторной батарее и ток, потребляемый насосом, так и остались на экране индикатора. Ранее я не задумывался о таком неприятном инциденте, теперь надо будет это дело учитывать в программе устройств и их схемах. А то будешь любоваться красивыми циферками на экране дисплея, а на самом деле все уже давно сгорело. В общем, батарея разрядилась полностью, что для знакомого, как он сказал, тогда было очень плохо.
Схема прибора с индикаторным светодиодом показана на рисунке.

Основой схемы являются микроконтроллер PIC16F676 и индикатор ЖКИ. Так, как все это работает исключительно в теплое время года, то индикатор и контроллер можно приобрести самые дешевые. Операционный усилитель выбран тоже соответствующий – LM358N, дешевый и имеющий диапазон рабочих температур от 0 до +70.
Для преобразования аналоговых величин (оцифровки) напряжения и тока выбрано стабилизированное напряжение питания микроконтроллера величиной +5В. А это значит, что при десятиразрядной оцифровке аналогового сигнала каждому разряду будет соответствовать – 5В = 5000 мВ = 5000/1024 = 4,8828125 мВ. Эта величина в программе умножается на 2, и получаем — 9,765625мВ на один разряд двоичного кода. А нам надо для корректного вывода информации на экран ЖКИ, чтобы один разряд был равен 10 мВ или 0,01 В. Поэтому в схеме предусмотрены масштабирующие цепи. Для напряжения, это регулируемый делитель, состоящий из резисторов R5 и R7. Для коррекции показаний величины тока служит масштабирующий усилитель, собранный на одном из операционных усилителей микросхемы DA1 – DA1.2. Регулировка коэффициента передачи этого усилителя осуществляется с помощью резистора R3 величиной 33к. Лучше, если оба подстроечных резистора будут многооборотными. Таким образом, при использование для оцифровки напряжения величиной ровно +5 В, прямое подключение сигналов на входы микроконтроллера запрещено. Оставшийся ОУ, включенный между R5 и R7 и входом RA1, микросхемы DD1, является повторителем. Служит для уменьшения влияния на оцифровку шумов и импульсных помех, за счет стопроцентной, отрицательной, частотно независимой обратной связи. Для уменьшения шумов и помех при преобразовании величины тока, служит П образный фильтр, состоящий из С1,С2 и R4. В большинстве случаев С2 можно не устанавливать.

В качестве датчика тока, резистор R2, используется отечественный заводской шунт на 20А – 75ШСУ3-20-0,5. При токе, протекающем через шунт в 20А, на нем упадет напряжение величиной 0,075 В (по паспорту на шунт). Значит, для того, чтобы на входе контроллера было два вольта, коэффициент усиления усилителя должен быть примерно 2В/0,075 = 26. Примерно — это потому, что у нас дискретность оцифровки не 0,01 В, а 0,09765625 В. Конечно, можно применить и самодельные шунты, откорректировав коэффициент усиления усилителя DA1.2. Коэффициент усиления данного усилителя равен отношению величин резисторов R1 и R3, Кус = R3/R1.
И так, исходя из выше сказанного, вольтметр имеет верхний предел – 50 вольт, а амперметр – 20 ампер, хотя при шунте, рассчитанном на 50 ампер, он будет измерять 50А. Так, что его можно с успехом установить в других устройствах.
Теперь о доработке, включающей в себя добавление индикаторного светодиода. В программу были внесены небольшие изменения и теперь, пока контроллер работает, светодиод моргает с частотой примерно 2 Гц. Время свечения светодиода выбрано 25мсек, для экономии. Можно было бы вывести на дисплей моргающий курсор, но сказали, что со светодиодом нагляднее и эффектнее. Вроде все. Успехов. К.В.Ю.


.

Один из вариантов готового устройства, реализованного Алексеем. К сожалению фамилии не знаю. Спасибо ему за работу и фото.

ВОЛЬТАМПЕРМЕТР НА МИКРОКОНТРОЛЛЕРЕ В ЛАБОРАТОРНЫЙ БП

В наш век прогресса у любого радиолюбителя самый главный прибор при наладке устройств это лабораторный блок питания (БП). БП может быть как самодельный, так и заводского исполнения. Отличаются по сложности, может быть собран всего на одном линейном регуляторе напряжения, например LM317T, может быть собран на операционных усилителях, на транзисторах. БП может иметь защиту от КЗ, или наоборот, регулируемое ограничение выходного тока. А более совершенные БП имеют переключение режима «Защита от КЗ/Ограничение выходного тока». Но почти все БП оборудованы в лучшем случае вольтметром. Цифровой вольтметр сложен в изготовлении и настройке, и чаще всего требует применения специализированных микросхем АЦП, например, КР572ПВ2А.

Но вся сложность заключается не в изготовлении платы, а в необходимости применения двухполярного питания +5 В, -5 В для питания указанной микросхемы. Для этого нужен отдельный маломощный БП или отдельные обмотки трансформатора. Таким образом, данные АЦП не очень зарекомендовали себя в радиолюбительской практике. Что же происходит? На дворе XXI-й век, а дизайна любительских БП не коснулся прогресс? Необходимо исправить эту ситуацию! Задумавшись над этим, я пришел к выводу, что надо сделать собственное устройство индикации параметров БП на микроконтроллере. В связи с этим и была разработан модуль - цифровой вольтамперметр. Который и будет рассмотрен далее более подробно. Данная разработка предложена вам для повторения и возможной доработки, так как она выполнена в пилотном варианте и требует доработок..(Планировалась функция вычисления потребляемой мощности и отображение на индикаторе, но до этого не дошли лапы, а при испытании обнаружены баги при измерении тока.) Но даже в таком варианте данная схема вполне работоспособна и может быть предложена для повторения даже начинающим радиолюбителям. Основной упор делался на то, чтобы сохранить минимальную сложность, чтобы не оставить за бортом начинающих радиолюбителей. Вот что у меня получилось.

Схема и рисунок печатной платы представлены далее.

Устройство обеспечивает следующие параметры и функции:

  • 1. Измерение и индикация выходного напряжения блока питания в диапазоне от 0 до 100 В, с дискретностью 0,01 В
  • 2. Измерение и индикация выходного тока нагрузки блока питания в диапазоне от 0 до 10 А с дискретностью 10 мА
  • 3. Погрешность измерения — не хуже ±0,01 В (напряжение) или ±10 мА (ток)
  • 4. Переключение между режимами измерения напряжение/ток осуществляется с помощью кнопки с фиксацией в нажатом положении.
  • 5. Вывод результатов измерения на большой четырехразрядный индикатор. При этом три разряда используются для отображения значения измеряемой величины, а четвертый - для индикации текущего режима измерения.
  • 6. Особенность моего вольтамперметра - автоматический выбор предела измерения. Смысл в том, что напряжения 0-10 В отображаются с точностью 0,01 В, а напряжения 10-100 В с точностью 0,1 В.
  • 7. Реально делитель напряжения рассчитан с запасом, если измеряемое напряжение увеличивается больше 110 В (ну может кому-то надо меньше, можно исправить это в прошивке), на индикаторе отображаются символы перегрузки - O.L (Over Load). Аналогично сделано и с амперметром, при превышении измеряемого тока больше 11 А вольтамперметр переходит в режим индикации перегрузки.

Вольтметр осуществляет измерение и индикацию только положительных значений тока и напряжения, причем для измерения тока используется шунт в цепи «минуса». Устройство выполнено на микроконтроллере DD1 (МК) ATMega8-16PU.

Технические параметры ATMEGA8-16PU :

  • Ядро AVR
  • Разрядность 8
  • Тактовая частота, МГц 16
  • Объем ROM-памяти 8K
  • Объем RAM-памяти 1K
  • Внутренний АЦП, кол-во каналов 23
  • Внутренний ЦАП, кол-во каналов 23
  • Таймер 3 канала
  • Напряжение питания, В 4.5…5.5
  • Температурный диапазон, C 40...+85
  • Тип корпуса DIP28

Количество дополнительных элементов схемы — минимально. (Более полные данные на МК можно узнать из даташита на него). Резисторы на схеме — типа МЛТ-0,125 или импортные аналоги, электролитический конденсатор типа К50-35 или аналогичный, напряжением не менее 6,3 В, емкость его может отличаться в большую сторону. Конденсатор 0,1 мкФ — керамический импортный. Вместо DA1 7805 можно применить любые аналоги. Максимальное напряжение питания устройства определяется максимальным допустимым входным напряжением этой микросхемы. О типе индикаторов сказано далее. При переработке печатной платы возможно применение иных типов компонентов, в том числе SMD.

Резистор R… импортный керамический, сопротивление 0,1 Ом 5 Вт, возможно применение более мощных резисторов, если габариты печатки позволяют установить. Также нужно изучить схему стабилизации тока БП, возможно там уже есть токоизмерительный резистор на 0,1 Ом в минусовой шине. Можно будет использовать по возможности этот резистор. Для питания устройства может использоваться либо отдельный стабилизированный источник питания +5 В (тогда микросхема DA1 не нужна), либо нестабилизированный источник +7…30 В (с обязательным использованием DA1). Потребляемый устройством ток не превышает 80 мА. Следует обращать внимание на то, что стабильность питающего напряжения косвенно влияет на точность измерения тока и напряжения. Индикация — обычная динамическая, в определенный момент времени светится только один разряд, но из-за инерционности нашего зрения мы видим светящимися все четыре индикатора и воспринимаем как нормальное число.

Использовал один токоограничительный резистор на один индикатор и отказался от необходимости дополнительных транзисторных ключей, т. к. максимальный ток порта МК в данной схеме не превышает допустимые 40 мА. Путем изменения программы можно реализовать возможность использования индикаторов как с общим анодом, так и с общим катодом. Тип индикаторов может быть любым — как отечественным, так и импортным. В моем варианте применены двухразрядные индикаторы VQE-23 зеленого свечения с высотой цифры 12 мм (это древние, мало-яркие индикаторы, найденные в старых запасах). Здесь приведу его технические данные для справки;

  • Индикатор VQE23, 20x25mm, ОК, зеленый
  • Двухразрядный 7-сегментный индикатор.
  • Тип Общий катод
  • Цвет зеленый (565nm)
  • Яркость 460-1560uCd
  • Десятичные точки 2
  • Номинальный ток сегмента 20mA

Ниже указано расположение выводов и габаритный чертеж индикатора:

  • 1. Анод H1
  • 2. Анод G1
  • 3. Анод A1
  • 4. Анод F1
  • 5. Анод B1
  • 6. Анод B2
  • 7. Анод F2
  • 8. Анод A2
  • 9. Анод G2
  • 10. Анод H2
  • 11. Анод C2
  • 12. Анод E2
  • 13. Анод D2
  • 14. Общ катод К2
  • 15. Общ катод К1
  • 16. Анод D1
  • 17. Анод E1
  • 18. Анод C1

Возможно использование вообще любых индикаторов как одно-, двух-, так и четырехразрядных с общим катодом, придется только разводку печатной платы под них делать. Плата изготовлена из двухстороннего фольгированного стеклотекстолита, но возможно применение одностороннего, просто надо будет несколько перемычек запаять. Элементы на плате устанавливаются с обеих сторон, поэтому важен порядок сборки:

Сначала необходимо пропаять перемычки (переходные отверстия), которых много под индикаторами и возле микроконтроллера.
. Затем микроконтроллер DD1. Для него можно использовать цанговую панельку, при этом ее надо устанавливать не до упора в плату, чтобы можно было пропаять выводы со стороны микросхемы. Т.к. не было под лапой цанговой панельки, было решено впаять МК намертво в плату. Для начинающих не рекомендую, в случае неудачной прошивки 28-ногий МК очень неудобно заменять.
. Затем все прочие элементы.

Эксплуатация данного модуля вольтамперметра не требует объяснения. Достаточно правильно подключить питание и измерительные цепи. Разомкнутый джемпер или кнопка - измерение напряжения, замкнутый джемпер или кнопка - измерение тока. Прошивку можно любым доступным для вас способом. Из Fuse-битов, что необходимо сделать, так это включить встроенный генератор 4 МГц. Ничего страшного не случится, если их не прошить, просто МК будет работать на 1 МГц и цифры на индикаторе будут сильно мерцать.

А вот и фотография вольтамперметра:

Я не могу дать конкретных рекомендаций, кроме вышесказанных, о том, как подключить устройство к конкретной схеме блока питания — ведь их такое множество! Надеюсь, эта задача действительно окажется такой легкой, как это я себе представляю.

P.S. В реальном БП данная схема не проверялась, собрана как макетный образец, в будущем планируется сделать простой регулируемый БП с применением данного вольтамперметра. Буду благодарен тем, кто испытает в работе данный вольтамперметр и укажет на существенные и не очень недостатки. За основу взята схема от ARV Моддинг блока питания с сайта радиокот. Прошивку для c исходными кодами для CodeVision AVR C Compiler 2.04, и плату в формате ARES Proteus можно скачать на . Также прилагается рабочий проект в ISIS Proteus. Материал предоставил - i8086.

Схема на рис.1 - развитие предыдущей идеи конструкции по использованию аналогового входа в микроконтроллере, не имеющего встроенного АЦП, а так же используются технические приемы из другой идеи конструкции по управлению семисегментным светодиодным индикатором без внешних ключевых транзисторов. Данная схема имеет последовательный канал, и нужна только витая пара для передачи измеренных значений на персональный компьютер.

Последовательный канал был протестирован с использованием программы компании Microsoft Hyper Terminal сконфигурированной параметрами 115,200 бод; 8 бит, четность, 1 стоп-бит; без аппаратного контроля.

Коротко, программа управляет одним светодиодным семисегментным индикатором за раз по линиям RA0 и RB7. Установка выхода RA0 в единицу и использование RB7, как входа активизирует индикатор с общим анодом DS3. Установка выхода RA0 в ноль и использование RB7 как входа, активизирует индикатор с общим катодом DS2. Использование RA0 как входа и установка выхода RB7 в единицу активизирует индикатор с общим анодом DS1, а при использовании RA0 как вход и установке выхода RB7 в ноль активизирует индикатор с общим катодом DS0. После успешной активизации одного индикатора, только одна из линий RB0 … RB6, конфигурируется как выход для управления одним светодиодным сегментом. Эта схема больше не имеет ограничения на питающее напряжение VDD - 3В или ниже - так как светодиоды включены встречно-параллельно, таким образом, прямое падение напряжения на одном светодиоде ограничивает обратное напряжение на другом. Использование красных светодиодов требует 1,6 В.

Рис.2 иллюстрирует новые аспекты идеи конструкции. Q1, R5, и R6 работают как эквивалентный переменный резистор, RX, который заряжает конденсатор C3. Вместо подключения RX к земле, просто подключите его к одной линии ввода-вывода - например RB0 - микроконтроллера. Если RB0 включен как выход в нулевом состоянии, значит первый аналоговый канал активизирован и измерительная подпрограмма подсчитывает импульсы заряда до величины 66% от VDD; затем, по таблице полученная величина задержки переводится в величину милливольт из трех цифр. Для увеличения количества аналоговых входов, вы можете подключить до семи цепей переменного резистора в параллель - таким образом, что каждый подключен между C3 и одной линией ввода-вывода, RB1 … RB7. Важно, что линии ввода-вывода подключены к индикаторам и так же активируют или отключают аналоговые каналы. Когда один аналоговый канал активизирован линией ввода-вывода выходом в низком состоянии, другие линии имеют высокое сопротивление и работают как входы, что отключает все остальные каналы. Соответственно, индикаторы отключены.

В схему на рис.1 так же добавлен простейший последовательный канал без добавления внешних компонентов. Если вы подключите две линии ввода-вывода, RA1 и RA2, сконфигурированные как выходы к RXD (Выв 2) и GND (Выв 5) разъема RS 232, вы сможете создавать, с помощью программы, положительное и отрицательное напряжение относительно земли порта RS 232 в ПК. Когда RA1 в единице, а RA2 в ноле, RXD имеет положительный потенциал 5 В относительно земли порта RS 232 в ПК. Когда RA1 в ноле, а RA2 в единице, RXD имеет отрицательный потенциал -5 В относительно земли порта RS 232 в ПК.

Плата нашего измерительного прибора универсальна и в зависимости от установленных элементов может выполнять функции как вольтметра, так и амперметра с различными пределами измерений. В этой статье речь пойдет о том, как из нее сделать простой вольтметр на AVR с разными пределами измерения. В рассказано о том, как на основе той же самой платы можно сделать амперметр.

Для того, чтобы схема была универсальна ко входу можно подключить шунт, делитель напряжения или операционный усилитель.

Делитель напряжения R2, R3 позволяет измерять напряжения больше 5ти вольт. Для измерения малых напряжений входной сигнал пропускается через операционный усилитель DA2 с регулируемым коэффициентом усиления. Его коэффициент усиления задается резисторами R4, R5. Для измерения тока на входе прибора должен быть установлен шунт R1.
Основой схемы служит микроконтроллер Atmega8. После преобразования уровня сигнала он поступает на вход АЦП, встроенного в микроконтроллер. Микроконтроллер выводит полученное значение на трехразрядном сегментном индикаторе с общим анодом. Напряжение на аноды разрядов поступает через транзисторы. Резисторы в эмиттерах R9, R10, R11 задают яркость индикатора. Способ индикации — динамический.
Питание можно подавать напрямую от источника напряжения 5В, либо через стабилизатор. Обратите внимание, что минус питания и минус измерительного входа соединены друг с другом.

Печатная плата

Плата измерительного прибора

Плата односторонняя и содержит все элементы измерительного прибора. Резистор R1 (шунт амперметра) имеет несколько посадочных мест для корпусов разной мощности. Файл с платой, нарисованной в формате Sprint-Layout 5.0 можно скачать по ссылке .

Программа

При включении устройства в течении двух секунд на индикатор выводится приветствие «HI», после чего начинается работа прибора. В AVR-микроконтроллерах используется 10-ти разрядный АЦП. В нашем проекте мы используем только девять разрядов. Эта разрядность позволяет получить конечную приборную точность 1%. Для большей стабильности и плавности изменения показаний берется выборка из ста отсчетов и на дисплей выводится наибольший из них. Если входное напряжение превышает диапазон измеряемых значений на индикатор выводится сообщение: -0. Третий разряд не включается, если он не используется.
HEX-фал для каждой версии свой. Мы будем их прикладывать к каждой версии отдельно. Фьюз-биты всегда должны оставаться заводскими. Прошивка загружается через стандартный 6ти-пиновый разъем ISP-программирования.

Технические характеристики

  • напряжение питания, 5В либо 7-12В
  • потребляемый ток, не более 60мА
  • частота обновления индикатора, 56Гц
  • пределы измерения, 0.5В, 5В, 50В
  • входное сопротивление, не менее 10кОм
  • точность, не менее, 10%

Вольтметр на 50В

Для сборки вольтметра с пределом измерения 50В нужно установить все элементы, кроме R1, R4, R5, DA2. Если вы не планируете использовать нестабилизированное питание, то можно не устанавливать также конденсатор C1 и стабилизатор DA1.

После сборки плата с лицевой стороны выглядит так:

…и с обратной стороны:

Элементы схемы на предел 50В:

  1. R2 — подстроечный резистор CA6V на 2,5кОм, 1шт
  2. R3 — чип-резистор 0805 на 10кОм, 1шт.
  3. Гребенка PLS-контактов

Прошивку для версии с пределом измерения на 50В можно скачать . Фьюз-биты оставляем без изменения.
Если все правильно собрано, то работать должно примерно так:

На видео левый блок используется как источник питания, а правый в качестве источника измеряемого напряжения.

Вольтметр на 5В

На плату необходимо установить следующие элементы:

  1. C2 — танталовый конденсатор, 22мкФ, 16В T491C226K016AT, 1шт.
  2. C1,C3,C4 — конденсаторы на 0,1мкФ в корпусе 0805
  3. DA1 — стабилизатор L7805 в корпусе D2PAK, 1шт.
  4. DD1 — микроконтроллер Atmega8a-au, 1шт.
  5. J1 — чип-резистор 1206 с сопротивлением 0 Ом, 1шт. (перемычка)
  6. HL1 — сегментный индикатор BA56-12YWA, 1шт. (желательно устанавливать через колодку)
  7. R2 — подстроечный резистор CA6V на 25кОм, 1шт
  8. R3 — чип-резистор 0805 на 1кОм, 1шт.
  9. R6-R8, R12 — чип-резисторы 0805 на 1кОм, 4шт.
  10. R9-R11 — чип-резисторы 0805 на 56Ом, 3шт. (можно взять с меньшим сопротивлением для увеличения яркости)
  11. VT1-VT3 — транзисторы BC807-40, 3шт.
  12. Гребенка PLS-контактов

Фактически отличаются только сопротивления резисторов в делителе напряжения R2, R3.
Прошивку для версии вольтметра на 5В можно скачать . Фьюз-биты оставляем без изменения. Отличие этой прошивки от предыдущей только в положении разрядной точки.
Видео работы вольтметра на 5В:

Вольтметр на 300мВ

Для работы с пределом измерения от 0 до 300мВ потребуется дополнительный каскад на микросхеме LM358N. Принципиальная схема при этом принимает следующий вид:

Резисторы R4, R5 задают коэффициент усиления усилителя. R1 необходим для того, чтобы в отсутствии входного сигнала вольтметр показывал 0В.
Элементы платы:

  1. C2 — танталовый конденсатор, 22мкФ, 16В T491C226K016AT, 1шт.
  2. C1,C3,C4 — конденсаторы на 0,1мкФ в корпусе 0805
  3. DA1 — стабилизатор L7805 в корпусе D2PAK, 1шт.
  4. DA2 — операционный усилитель L358N в корпусе SO8, 1шт.
  5. DD1 — микроконтроллер Atmega8a-au, 1шт.
  6. J1 — чип-резистор 1206 с сопротивлением 0 Ом, 1шт. (перемычка)
  7. HL1 — сегментный индикатор BA56-12YWA, 1шт. (желательно устанавливать через колодку)
  8. R1 — чип-резистор 0805 на 10кОм, 1шт.
  9. R4 — чип-резистор 0805 на 1кОм, 1шт.
  10. R5 — подстроечный резистор CA6V на 25кОм, 1шт
  11. R6-R8, R12 — чип-резисторы 0805 на 1кОм, 4шт.
  12. R9-R11 — чип-резисторы 0805 на 56Ом, 3шт. (можно взять с меньшим сопротивлением для увеличения яркости)
  13. VT1-VT3 — транзисторы BC807-40, 3шт.
  14. Гребенка PLS-контактов

Версия прошивки для этого вольтметра не использует разрядную точку совсем. Если старшие разряды индикатора не используются, то они отключаются. В этой версии вольтметра переполнение показывается при достижении входного напряжения 300мВ. Скачать ее можно . Фьюз-биты также необходимо оставить без изменения.
Видео работы вольтметра с пределом измерения 300мВ:

Предосторожности в работе и особенности эксплуатации

Вольтметр предназначен для встраивания в любительскую радиоаппаратуру и поэтому не имеет встроенных схем защиты. Вы можете его раз и навсегда встроить его в свой лабораторный блок питания или для контроля показаний какого-либо датчика. Он не предназначен для повседневного использования в качестве тестера, поэтому необходимо соблюдать предосторожности при работе с ним:

  1. Вольтметр рассчитан только для измерения постоянного напряжения
  2. У вольтметра нет встроенной защиты от смены полярности входного напряжения
  3. Измерения производятся относительно напряжения питания. Другими словами стабильность питающего напряжения определяет точность показаний вольметра.
  4. У вольтметра нет защиты по входу. Не стоит подавать на него напряжения больше предельного
  5. Вход вольметра не имеет гальванической развязки. Если вы питаете основную схему и предложенный вольтметр от одного и того же источника питания измерения можно производить только относительно общего провода . В случае, когда необходимо измерить разность потенциалов между двумя точками на которых есть напряжение, необходимо использовать для питания вольтметра отдельный источник питания с гальванической развязкой через трансформатор. И при этом обязательно подключать минус вольтметра к точке с меньшим напряжением!
  6. Если необходимо увеличить яркость индикатора, можно уменьшить сопротивление резисторов R9-R11. Однако не стоит ставить сопротивление меньше 20Ом
  7. Если вы планируете использовать вольтметр для индикации бортового напряжения в автомобиле вам потребует подключить только два провода: минус автомобиля к «GND» вольтметра, а плюсовой провод к выводам разъема «7-12V» и «+»

Если у вас будут какие-то пожелания относительно пределов измерения, количества включенных разрядов, положения разрядной точки и т.д., то я могу скомпилировать прошивку под ваши нужно. Вам достаточно обратиться ко мне в комментариях или через форму обратной связи на сайте. Если кто-то пропустил ссылку на плату, то вот она .
О том, как сделать на основе этой платы амперметр читайте в .

Мы будем очень рады, если вы поддержите наш ресурс и посетите магазин наших товаров .