Переделка at блок в регулируемый. Как сделать регулируемый блок питания из компьютерного. Структурная схема блока питания AT

Обычно для переделки компьютерных блоков питания используют блоки ATX, собранные на микросхемах TL494 (KA7500), но в последнее время такие блоки не попадаются. Их стали собирать на более специализированных микросхемах, на которых сложнее сделать регулировку тока и напряжения с нуля. По этой причине был взят для доработки старый блок типа AT на 200W, который был в наличии.

Этапы переделки

1. Вмонтирована плата зарядного устройства от мобильного телефона Nokia AC-12E с доработкой. В принципе можно использовать и другие зарядные устройства.


Доработка заключалась в перемотке III обмотки трансформатора и установке дополнительного диода и конденсатора. После переделки блок стал выдавать напряжения +8V для питания вентилятора и вольтметра-амперметра и +20V для питания микросхемы управления TL494N.


2. С платы блока AT выпаяны детали самозапуска первичной цепи и цепи регулировки выходного напряжения. Также были удалены все вторичные выпрямители.


Выходной выпрямитель переделан по мостовой схеме. Использованы три диодных сборки MBR20100CT. Дроссель перемотан - диаметр кольца 27 мм, 50 витков в 2 провода ПЭЛ 1 мм. В качестве нелинейной нагрузки применена лампа накаливания 26V 0,12A. С ней напряжение и ток хорошо регулируются от нуля.
Для обеспечения устойчивой работы микросхемы изменены цепи коррекции. Для грубой и точной регулировок напряжения и тока применено особое подключение потенциометров. Такое подключение позволяет плавно изменять напряжение и ток в любом месте при любом положении потенциометра грубой регулировки.

Особого внимания требует шунт, провода для регулировки и измерения должны подключатся непосредственно к его выводам, так как напряжение, снимаемое с него невелико. На схеме эти подключения показаны фиолетовыми стрелками. Измеряемое напряжение для цепи регулирования снимается с делителя с коррекцией для устранения самовозбуждения в цепях управления.
Верхний предел установки напряжения подбираются резисторами R38, R39 и R40. Верхний предел установки тока подбирается резистором R13.


3. Для измерения тока и напряжения применен вольтметр-амперметр


За основу взята схема «Суперпростой амперметр и вольтметр на супердоступных деталях (автовыбор диапазона)» от Eddy71 .
В схему введена регулировка баланса ОУ при измерении тока, что позволило резко улучшить линейность. На схеме это потенциометр «Баланс ОУ», напряжение с которого поступает на прямой или инверсный входы (подбирается, куда подключить, на схеме обозначено зелеными линиями).
Автоматический выбор диапазона измерения реализован программно. Первый диапазон до 9,99A с указанием сотых долей, второй до 12A с указанием десятых долей ампера.


4. Программа для микроконтроллера написана на СИ (mikroC PRO for PIC)и снабжена комментариями.

Конструкция и детали

Конструктивно все элементы размещены в корпусе блока AT. Плата зарядного устройства закреплена на радиаторе с силовыми транзисторами. Сетевые разъемы убраны и на их месте установлен выключатель и выходные зажимы. Сбоку на крышке блока находятся резисторы установки напряжения и тока и индикатор вольтметра-амперметра. Закреплены они на фальшпанели с внутренней стороны крышки.

Чертежи выполнены в программе Frontplatten-Designer 1.0. Междукаскадный трансформатор блока AT не переделывается. Выходной трансформатор блока AT тоже не переделывается, просто средний отвод, выходящий из катушки, отпаивается от платы и изолируется. Выпрямительные диоды заменены на новые, указанные в схеме.
Шунт взят от неисправного тестера и закреплен на изоляционных стойках на радиаторе с диодами. Плата для вольтметра-амперметра использована от «Суперпростого амперметра и вольтметра на супердоступных деталях (автовыбор диапазона)» от Eddy71 с последующей доработкой (перерезаны дорожки, согласно схемы).

Замеченные особенности недостатки

В качестве базового блока использован блок AT 200 W. К сожалению, он имеет довольно маленький радиатор для силовых транзисторов. При этом вентилятор подключен к напряжению 8 Вольт (для уменьшения создаваемого шума), поэтому токи больше 6 – 7 Ампер, снимать можно только кратковременно, во избежание перегрева транзисторов.

Файлы

Файлы схем, плат, чертежей и исходники и прошивка
🕗 10/01/13 ⚖️ 70,3 Kb ⇣ 521


Как самому изготовить полноценный блок питания с диапазоном регулируемого напряжения 2,5-24 вольта, да очень просто, повторить может каждый не имея за плечами радиолюбительского опыта.

Делать будем из старого компьютерного блока питания, ТХ или АТХ без разницы, благо, за годы PC Эры у каждого дома уже накопилось достаточно количество старого компьютерного железа и БП наверняка тоже там есть, поэтому себестоимость самоделки будет незначительной, а для некоторых мастеров равно нулю рублей.

Мне достался для переделки вот какой АТ блок.


Чем мощнее будете использовать БП тем лучше результат, мой донор всего 250W с 10 амперами на шине +12v, а на деле при нагрузке всего 4 А он уже не справляется, происходит полная просадка выходного напряжения.

Смотрите что написано на корпусе.


Поэтому смотрите сами, какой ток вы планируете получать с вашего регулируемого БП, такой потенциал донора и закладывайте сразу.

Вариантов доработки стандартного компьютерного БП множество, но все они основаны на изменении в обвязке микросхемы IC - TL494CN (её аналоги DBL494, КА7500, IR3М02, А494, МВ3759, М1114ЕУ, МPC494C и т.д.).


Рис №0 Распиновка микросхемы TL494CN и аналогов.

Посмотрим несколько вариантов исполнения схем компьютерных БП, возможно одна из них окажется ваша и разбираться с обвязкой станет намного проще.

Схема №1.

Приступим к работе.
Для начала необходимо разобрать корпус БП, выкручиваем четыре болта, снимаем крышку и смотрим внутрь.


Ищем на плате микросхему из списка выше, если таковой не окажется, тогда можно поискать вариант доработки в интернете под вашу IС.

В моем случае на плате была обнаружена микросхема KA7500, значит можно приступать к изучению обвязки и расположению ненужных нам деталей, которые необходимо удалить.


Для удобства работы, сначала полностью открутим всю плату и вынем из корпуса.


На фото разъём питания 220v.

Отсоединим питание и вентилятор, выпаиваем или выкусываем выходные провода, чтобы не мешали нам разбираться в схеме, оставим только необходимые, один желтый (+12v), черный (общий) и зеленый* (пуск ON) если есть такой.


В моём АТ блоке зеленого провода нет, поэтому он запускается сразу при включении в розетку. Если блок АТХ, то в нем должен быть зеленый провод, его необходимо припаять на "общий", а если пожелаете сделать отдельную кнопку включения на корпусе, то тогда просто поставьте выключатель в разрыв этого провода.


Теперь надо посмотреть на сколько вольт стоят выходные большие конденсаторы, если на них написано меньше 30v , то надо заменить их на аналогичные, только с рабочим напряжение не меньше 30 вольт.


На фото - черные конденсаторы как вариант замены для синего.

Делается это потому, что наш доработанный блок будет выдавать не +12 вольт, а до +24 вольт, и без замены конденсаторы просто взорвутся при первом испытании на 24v, через несколько минут работы. При подборе нового электролита емкость уменьшать не желательно, увеличивать всегда рекомендуется.

Самая ответственная часть работы.
Будем удалять все лишнее в обвязке IC494, и припаивать другие номиналы деталей, чтобы в результате получилась вот такая обвязка (Рис. №1).


Рис. №1 Изменение в обвязке микросхемы IC 494 (схема доработки).

Нам будут нужны только эти ножки микросхемы №1, 2, 3, 4, 15 и 16, на остальные внимание не обращать.


Рис. №2 Вариант доработки на примере схемы №1

Расшифровка обозначений.


Делать надо примерно так , находим ножку №1 (где стоит точка на корпусе) микросхемы и изучаем, что к ней присоединено, все цепи необходимо удалить, отсоединить. В зависимости от того как у вас в конкретной модификации платы будут расположены дорожки и впаяны детали, выбирается оптимальный вариант доработки, это может быть выпаивание и приподнятие одной ножки детали (разрывая цепь) или проще будет перерезать дорожку ножом. Определившись с планом действий, начинаем процесс переделки по схеме доработки.




На фото - замена резисторов на нужный номинал.


На фото - приподнятием ножек ненужных деталей, разрываем цепи.

Некоторые резисторы, которые уже впаяны в схему обвязки могут подойти без их замены, например, нам необходимо поставить резистор на R=2.7k с подключением к "общему", но там уже стоит R=3k подключенный к "общему", это нас вполне устраивает и мы его оставляем там без изменений (пример на Рис. №2, зеленые резисторы не меняются).






На фото - перерезанные дорожки и добавленные новые перемычки, старые номиналы записываем маркером, может понадобится восстановить все обратно.

Таким образом просматриваем и переделываем все цепи на шести ножках микросхемы.

Это был самой сложный пункт в переделке.

Делаем регуляторы напряжения и тока.


Берем переменные резисторы на 22к (регулятор напряжения) и 330Ом (регулятор тока), припаиваем к ним по два 15см провода, другие концы впаиваем на плату согласно схеме (Рис. №1). Устанавливаем на лицевую панель.

Контроль напряжения и тока.
Для контроля нам понадобятся вольтметр (0-30v) и амперметр (0-6А).


Эти приборы можно приобрести в Китайских интернет магазинах по самой выгодной цене, мой вольтметр мне обошелся с доставкой всего 60 рублей. (Вольтметр: )


Амперметр я использовал свой, из старых запасов СССР.

ВАЖНО - внутри прибора есть резистор Тока (датчик Тока), необходимый нам по схеме (Рис. №1), поэтому, если будете использовать амперметр, то резистор Тока ставить дополнительно не надо, без амперметра ставить надо. Обычно RТока делается самодельный, на 2-х ватное сопротивление МЛТ наматывается провод D=0,5-0,6 мм, виток к витку на всю длину, концы припаяем к выводам сопротивления, вот и все.

Корпус прибора каждый сделает под себя.
Можно оставить полностью металлический, прорезав отверстия под регуляторы и приборы контроля. Я использовал обрезки ламината, их легче сверлить и выпиливать.

Автомобильное зарядное устройство или регулируемый лабораторный блок питания с напряжением на выходе 4 — 25 В и током до 12А можно сделать из не нужного компьютерного АТ или АТХ блока питания.

Несколько вариантов схем рассмотрим ниже:

Параметры

От компьютерного блока питания мощностью 200W, реально получить 10 — 12А.

Схема АТ блока питания на TL494

Несколько схем АТX блока питания на TL494

Переделка

Основная переделка заключается в следующем, все лишние провода выходящие с БП на разъемы отпаиваем, оставляем только 4 штуки желтых +12в и 4 штуки черных корпус, cкручиваем их в жгуты. Находим на плате микросхему с номером 494 , перед номером могут быть разные буквы DBL 494 , TL 494 , а так же аналоги MB3759, KA7500 и другие с похожей схемой включения. Ищем резистор идущий от 1-ой ножки этой микросхемы к +5 В (это где был жгут красных проводов) и удаляем его.

Для регулируемого (4В – 25В) блока питания R1 должен быть 1к. Так же для блока питания желательно увеличить емкость электролита на выходе 12В (для зарядного устройства этот электролит лучше исключить), желтым пучком (+12 В) сделать несколько витков на ферритовом кольце (2000НМ, диаметром 25 мм не критично).

Так же следует иметь ввиду, что на 12 вольтовом выпрямителе стоит диодная сборка (либо 2 встречно включенных диода), рассчитанная на ток до 3 А, ее следует поменять на ту, которая стоит на 5 вольтовом выпрямителе, она расчитана до 10 А, 40 V , лучше поставить диодную сборку BYV42E-200 (сборка диодов Шотки Iпр = 30 А, V = 200 В), либо 2 встречно включенных мощных диода КД2999 или им подобным в таблице ниже.

Если БП АТХ для запуска необходимо соединить вывод soft-on с общим проводом (на разъём уходит зеленым проводом).Вентилятор нужно развернуть на 180 гр., что бы дул внутрь блока,если вы используете как блок питания, запитать вентилятор лучше с 12-ой ножки микросхемы через резистор 100 Ом.

Корпус желательно сделать из диэлектрика не забывая про вентиляционные отверстия их должно быть достаточно. Родной металлический корпус, используете на свой страх и риск.

Бывает при включении БП при большом токе может срабатывать защита, хотя у меня при 9А не срабатывает, если кто с этим столкнется следует сделать задержку нагрузки при включении на пару секунд.

Ещё один интересный вариант переделки компьютерного блока питания.

В этой схеме регулировка осуществляется напряжения (от 1 до 30 В.) и тока (от 0,1 до 10А).

Для самодельного блока хорошо подойдут индикаторы напряжения и тока. Вы их можете купить на сайте «Мастерок».


П О П У Л Я Р Н О Е:

    Когда я выезжаю на машине, беру с собой ноутбук…

    Однажды наткнулся на одном радиолюбительском сайте статью о том, как сделать автомобильный адаптер для ноутбука.

    Несложная схема (см. ниже) — одна микросхема и пара транзисторов…

Основа современного бизнеса - получение больших прибылей при сравнительно низких вложениях. Хотя этот путь и губителен для собственных отечественных разработок и промышленности, но бизнес есть бизнес. Тут либо вводи меры по предотвращению проникновения дешевых запцацак, либо делать на этом деньги. К примеру, если необходим дешевый блок питания, то не нужно изобретать и конструировать, убивая деньги, - просто нужно посмотреть на рынок распространенного китайского барахла и попытаться на его основе построить то, что необходимо. Рынок, как никогда, завален старыми и новыми компьютерными блока питания различной мощности. В этом блоке питания есть все что нужно - различные напряжения (+12 В, +5 В, +3,3 В, -12 В, -5 В), защиты этих напряжений от перенапряжения и от превышения тока. При этом компьютерные блоки питания типа ATX или TX имеют малый вес и небольшой размер. Конечно, блоки питания импульсные, но высокочастотных помех практически нет. При этом можно идти штатным проверенным способом и ставить обычный трансформатор с несколькими отводами и кучей диодных мостов, а регулирование осуществлять переменным резистором большой мощности. С точки зрения надежности трансформаторные блоки намного надежнее импульсных, ведь в импульсном блоки питания в несколько десятков раз больше деталей, чем в трансформаторном блоке питания типа СССР и если каждый элемент по надежности несколько меньше единицы, то общая надежность является произведением всех элементов и как результат - импульсные блоки питания по надежности намного меньше трансформаторных в несколько десятков раз. Кажется, что если так, то нечего городить огород и следует отказаться от импульсных блоков питания. Но тут более важным фактором, чем надежность, в нашей действительности является гибкость производства, а импульсные блоки достаточно просто могут трансформироваться и перестраиваться под совершенно любую технику в зависимости от требований производства. Вторым фактором является торговля запцацками. При достаточном уровне конкуренции производитель стремится отдать товар по себестоимости, при этом достаточно точно рассчитать время гарантии с тем, чтобы оборудование выходило из строя на следующей неделе, после окончания гарантии и клиент покупал бы запчасти по завышенным ценам. Порой доходит до того, что легче купить новую технику, чем чинить у производителя его бэушку.

Для нас вполне нормально вместо сгоревшего блока питания вкрутить транс или подпереть красную кнопку пуска газа в духовках "Дефект" столовой ложкой, а не покупать новую часть. Наш менталитет четко просекают китайцы и стремятся делать свои товары неремонтопригодными, но мы как на войне, умудряемся ремонтировать и усовершенствовать их ненадежную технику, а если уже все - "труба", то хоть какую-нить запцацку снять и вкидануть в другое оборудование.

Мне стал нужен блок питания для проверки электронных компонентов с регулируемым напряжением до 30 В. Был трансформатор, но регулировать через резак - несерьезно, да и вольтаж будет плавать на разных токах, а вот был старенький блоки питания ATX от компа. Зародилась идея приспособить комповский блок под регулируемый источник питания. Прогуглив тему, нашел несколько переделок, но все они предлагали радикально выкинуть всю защиту и фильтры, а мы бы хотелось сохранить весь блок на случай, если придется использовать его по прямому назначению. Поэтому я начал эксперименты. Цель - не вырезая начинку создать регулируемый блок питания с пределами изменения напряжений от 0 до 30 В.

Часть 1. Так себе.

Блок для опытов попался достаточно старый, слабый, но напичканный множеством фильтров. Блок был в пыли и поэтому перед запуском я его вскрыл и почистил. Вид деталей подозрений не вызвал. Раз все устраивает - можно делать пробный пуск и измерить все напряжения.

12 В - желтый

5 В - красный

3,3 В - оранжевый

5 В - белый

12 В - синий

0 - черный

По входу блока стоит предохранитель, а рядом напечатан тип блока LC16161D.

Блок типа ATX имеет разъем для подсоединения его к материнской плате. Простое включение блока в розетку не включает сам блок. Материнская плата замыкает два контакта на разъеме. Если их замкнуть - блок включится и вентилятор - индикатор включения - начнет вращение. Цвет проводов, которые нужно замыкать для включения, указан на крышке блока, но обычно это "черный" и "зеленый". Нужно вставить перемычку и включить блок в розетку. Если убрать перемычку блок отключится.

Блок TX включается от кнопки, которая находится на кабеле, выходящем из блока питания.

Понятно, что блок рабочий и прежде чем начать переделку, нужно выпаять предохранитель, стоящий по входу, и впаять вместо него патрон с лампочкой накаливания. Чем больше по мощности лампа, тем меньше напряжения будет на ней падать при тестах. Лампа защитит блок питания от всех перегрузок и пробоев и не даст выгореть элементам. При этом импульсные блоки практически нечувствительны к падению напряжения в питающей сети, т.е. лампа хоть и будет светить и кушать киловатты, но по выходным напряжениям просадки от лампы не будет. Лампа у меня на 220 В, 300 Вт.

Блоки строятся на управляющей микросхеме TL494 или ее аналог KA7500 . Также часто используется компоратор на микрухе LM339 . Вся обвязка приходит сюда и именно здесь придется делать основные изменения.

Напряжения в норме, блок рабочий. Приступаем к усовершенствованию блока по регулированию напряжений. Блок импульсный и регулирование происходит за счет регулирования длительности открытия входных транзисторов. Кстати, всегда думал, что колебают всю нагрузку полевые транзисторы, но, на самом деле, используются также быстрые переключающиеся биполярные транзисторы типа 13007, которые устанавливаются и в энергосберегающих лампах. В схеме блока питания нужно найти резистор между 1 ножкой микросхемы TL494 и шиной питания +12 В. В данной схеме он обозначается R34 = 39,2 кОм. Рядом установлен резистор R33 = 9 кОм, который связывает шину +5 В и 1 ножку микросхемы TL494. Замена резистора R33 ни к чему не приводит. Нужно заменить резистор R34 переменным резистором 40 кОм, можно и больше, но поднять напряжение по шине +12 В получилось только до уровня +15 В, поэтому в завышении сопротивления резистора смысла нет. Здесь идея в том, что чем выше сопротивление, тем выше выходное напряжение. При этом до бесконечности напряжение не увеличится. Напряжение между шинами +12 В и -12 В изменяется от 5 до 28 В.

Найти нужный резистор можно проследив дорожки по плате, либо при помощи омметра.

Выставляем переменный впаянный резистор в минимальное сопротивление и обязательно подключаем вольтметр. Без вольтметра тяжело определить изменение напряжений. Включаем блок и на вольтметре на шине +12 В установилось напряжение 2,5 В, при этом вентилятор не крутится, а блок питания немного поет на высокой частоте, что указывает на работу ШИМ на сравнительно небольшой частоте. Крутим переменный резистор и видим увеличение напряжений на всех шинах. Вентилятор включается примерно на +5 В.

Замеряем все напряжения по шинам

12 В: +2,5 ... +13,5

5 В: +1,1 ... +5,7

3,3 В: +0,8 ... 3,5

12 В: -2,1 ... -13

5 В: -0,3 ... -5,7

Напряжения в норме, кроме шины -12 В, и их можно варьировать для получения необходимых напряжений. Но компьютерные блоки сделаны так, чтобы по отрицательным шинам защита срабатывала при достаточно малых токах. Можно взять автомобильную лампочку на 12 В и включить между шиной +12 В и шиной 0. При увеличении напряжения лампочка станет светить все более ярко. При этом постепенно будет светить и лампа, включенная вместо предохранителя. Если включить лампочку между шиной -12 В и шиной 0, то при малом напряжении лампочка светится, но при определенном токе потребления блок уйдет в защиту. Защита срабатывает на ток порядка 0,3 А. Защита по току выполнена на резистивно-диодном делителе, чтобы его обмануть, нужно отключить диод между шиной -5 В и средней точкой, которая соединяет шину -12 В с резистором. Можно обрубить два стабилитрона ZD1 и ZD2. Стабилитроны применены как защита от перенапряжения и конкретно здесь через стабилитрон идет и защита по току. По крайней мере с шины - 12 В удалось взять 8 А, но это чревато пробоем микрухи обратной связи. В итоге путь тупиковый обрубать стабилитроны, а вот диод - вполне.

Для проверки блока нужно использовать переменную нагрузку. Наиболее рациональным является кусок спирали от нагревателя. Витой нихром - вот все что нужно. Для проверки включается нихром через амперметр между выводом -12 В и +12 В, регулируем напряжение и измеряем ток.

Выходные диоды для отрицательных напряжений значительно меньше тех, которые используются для положительных напряжений. Нагрузка соответственно также ниже. Более того, если в положительных каналах стоят сборки из диодов Шоттки, то в отрицательных каналах впаян обычный диод. Порой его припаивают к пластинке - типа радиатор, но это бред и для того чтобы поднять ток в канале -12 В нужно заменить диод, на что-то более сильное, но при этом сборки из диодов Шоттки у меня сгорели, а вот обычные диоды вполне неплохо тянули. Следует отметить, что защита не срабатывает, если нагрузка включена между разными шинами без шины 0.

Последним тестом является защита от короткого замыкания. Коротим накоротко блок. Защита работает только на шине +12 В, ведь стабилитроны отключили практически всю защиту. Все остальные шины по короткому не отключают блок. В итоге получен регулируемый блок питания из компьютерного блока с заменой одного элемента. Быстро, а значит экономически целесообразно. При тестах выяснилось, что если быстро крутить ручку регулировки, то ШИМ не успевает перестроиться и выбивает микруху обратной связи KA5H0165R , а лампа загорается очень ярко, затем входные силовые биполюсные транзисторы KSE13007 могут вылететь, если вместо лампы предохранитель.

Короче, все работает, но достаточно ненадежно. В таком виде нужно использовать только регулируемую шину +12 В и неинтересно медленно крутить ШИМ.

Часть 2. Более-менее.

Вторым экспериментом стал древнющий блок питания TX. Такой блок имеет кнопочку для включения - достаточно удобно. Переделку начинаем с перепайки резистора между +12 В и первой ножкой микрухи TL494. Резистор от +12 В и 1 ножкой ставится переменный на 40 кОм. Это дает возможность получить регулируемые напряжения. Все защиты остаются.

Далее нужно изменить пределы тока для отрицательных шин. Я впаял резистор, который выпаял из шины +12 В, и впаял в разрыв шины 0 и 11 ножкой микрухи TL339. Там уже стоял один резистор. Предел токов изменился, но при подключении нагрузки напряжение на шине -12 В сильно падало при увеличении тока. Скорее всего просаживает всю линию отрицательного напряжения. Потом я заменил перепаянный резак на переменный резистор - для подбора срабатываний по току. Но получилось неважно - нечетко срабатывает. Надо будет попробовать убрать этот дополнительный резистор.

Измерение параметров дало следующие результаты:

Шина напряжения, В

Напряжение на холостом ходу, В

Напряжение на нагрузке 30 Вт, В

Ток через нагрузку 30 Вт, А

Перепайку я начал с выпрямительных диодов. Диодов два и они достаточно слабые.

Диоды я взял от старого блока. Диодные сборки S20C40C - Шоттки, рассчитанные на ток 20 А и напряжение 40 В, но ничего путного не получилось. Либо сборки такие были, но один сгорел и я просто впаял два более сильных диодов.

Влепил разрезанные радиаторы и на них диоды. Диоды стали сильно греться и накрылись:) , но даже с более сильными диодами напряжение на шине -12 В так и не пожелало опуститься до -15 В.

После перепайки двух резисторов и двух диодов можно было скрутить блок питания и включить нагрузку. Вначале использовал нагрузку в виде лампочки, а измерял напряжение и ток по отдельности.

Затем перестал париться, нашел переменный резистор из нихрома, мультиметр Ц4353 - измерял напряжение, а цифровым - ток. Получился неплохой тандем. По мере увеличения нагрузки напряжение незначительно падало, ток рос, но грузил я только до 6 А, а лампа по входу светилась в четверть накала. При достижении максимального напряжения лампа по входу засветилась на половинную мощность, а напряжение на нагрузке несколько просело.

По большому счету переделка удалась. Правда, если включаться между шинами +12 В и -12 В, то защита не работает, но в остальном все четко. Всем удачных переделок.

Однако и такая переделка долго не прожила.

Часть 3. Удачная.

Еще одной переделкой стал блок питания с микрухой 339. Я не приверженец выпаивать все, а затем стараться запустить блок, поэтому по шагам поступил так:

Проверил блок на включение и срабатывание защиты от кз на шине +12 В;

Вынул предохранитель по входу и заменил на патрон с лампой накаливания - так безопасно включать чтобы не сжечь ключи. Проверил блок на включение и кз;

Удалил резистор на 39к между 1 ногой 494 и шиной +12 В, заменил на переменный резистор 45к. Включил блок - напряжение по шине +12 В регулируется в пределе +2,7...+12,4 В, проверил на кз;

Удалил диод с шины -12 В, находится за резистором, если идти от провода. По шине -5 В слежения не было. Иногда стоит стабилитрон, суть его одна - ограничение выходного напряжения. Выпаивание микруху 7905 уводит блок в защиту. Проверил блок на включение и кз;

Резистор 2,7к от 1 ножки 494 на массу заменил на 2к, там их несколько, но именно изменение 2,7к дает возможность изменить предел выходное напряжения. Например, при помощи резистора на 2к на шине +12 В стало возможным регулировать напряжение до 20 В, соответственно увеличив 2,7к до 4к максимальное напряжение стало +8 В. Проверил блок на включение и кз;

Заменил выходные конденсаторы на шинах 12 В на максимальное 35 В, шинах 5 В на 16 В;

Заменил спаренный диод шины +12 В, был tdl020-05f c напряжение до 20 В но током 5 А, поставил sbl3040pt на 40 А, выпаивать из шины +5 В не надо - нарушится обратная связь на 494. Проверил блок;

Измерил ток через лампу накаливания по входу - при достижении потребления тока в нагрузке 3 А лампа по входу светилась ярко, но ток на нагрузке больше не рос, просаживало напряжение, ток через лампу был 0,5 А, что укладывалось в ток родного предохранителя. Убрал лампу и поставил обратно родной предохранитель на 2 А;

Перевернул вентилятор обдува чтобы воздух вдувало внутрь блока и охлаждение радиатора было эффективнее.

В результате замены двух резисторов, трех конденсаторов и диода получилось переделать компьютерный блок питания в регулируемый лабораторный с выходном током больше 10 А и напряжением 20 В. Минус в отсутствии регулирования тока, но зато осталась защита от кз. Лично мне регулировать так не надо - блок итак выдает больше 10 А.

Переходим к практической реализации. Есть блок, правда TX. Но у него есть кнопка включения, тоже удобно для лабораторного. Блок способен выдать 200 Вт с заявленным током по 12 В - 8А и 5 В - 20 А.

На блоке написано, что вскрывать нельзя и внутри нет ничего такого для любителей. Так что мы вроде как профессионалы. На блоке есть переключатель на 110/220 В. Переключатель конечно удалим за ненадобностью, а вот кнопку оставим - пусть работает.

Внутренности более чем скромные - нет входного дроселя и заряд входных кондеров идет через резистор, а не через термистор, в результате идет потеря энергия, которая нагревает резистор.

Выбрасываем провода на переключатель 110 В и все что мешает отделить плату от корпуса.

Заменяем резистор на термистор и впаиваем дроссель. Убираем входной предохранитель и впаиваем вместо него лампочку накаливания.

Проверяем работу схему - входная лампа светится на токе примерно 0,2 А. Нагрузкой является лампа 24 В 60 Вт. Светится лампа на 12 В. Все хорошо и проверка на короткое замыкание работает.

Находим резистор от 1 ноги 494 к +12 В и поднимаем ногу. Подпаиваем переменный резистор вместо него. Теперь будет регулирование напряжения на нагрузке.

Ищем резисторы от 1 ноги 494 к общему минусу. Здесь их три. Все достаточно высокоомные, я выпаял самый низкоомный резистор на 10к и запаял вместо него на 2к. Это увеличило предел регулирования до 20 В. Правда при тесте этого еще не видно, срабатывает защита от перенапряжения.

Находим диод на шине -12 В, стоит после резистора и поднимаем его ногу. Это отключит защиту от перенапряжений. Теперь все должно быть.

Теперь меняем выходной конденсатор на шине +12 В на предел 25 В. И плюс 8 А это с натяжкой для маленького выпрямительного диода, так что и этот элемент меняем на что-то более силовое. И конечно включаем и проверяем. Ток и напряжение при наличии лампы по входу может сильно не расти если нагрузка подключена. Вот если нагрузку отключить, то напряжение регулируется до +20 В.

Если все устраивает - меняем лампу на предохранитель. И даем блоку нагрузку.

Для визуальной оценки напряжения и тока я использовал цифровой индикатор с алиэкспрес. Тут еще был такой момент - напряжение на шине +12В начинало с 2,5В и это было не очень приятно. А вот на шине +5В от 0,4В. Поэтому я объединил шины при помощи переключателя. Сам индикатор имеет 5 провод на подключение: 3 на измерение напряжения и 2 на ток. Индикатор питается напряжением от 4,5В. Дежурное питание как раз составляет 5В и им питается микруха tl494.

Очень рад что удалось переделать компьютерный блок питания. Всем удачной переделки.

Или как сделать дешёвый блок питания для усилителя на 100 Вт

А сколько будет стоить УНЧ Ватт на 300?

Смотря для чего:)

Дома слушать!

Баксов *** нормальный будет...

OMG! А подешевле никак?

Ммммм... Надо подумать...

И вспомнилось мне об импульсном БП, достаточно мощном и надёжном для УНЧ.

И начал я думать, как переделать его под наши нужды:)

После недолгих переговоров, человек, для которого всё это замышлялось сбавил планку мощности с 300 Ватт до 100-150, согласился пожалеть соседей. Соответственно импульсника на 200 Вт будет более, чем достаточно.

Как известно, компьютерный блок питания формата АТХ выдаёт нам 12, 5 и 3,3 В. В АТ блоках питания было ещё напряжение "-5 В". Нам эти напряжения не нужны.

В первом попавшемся БП, который был вскрыт для переделки стояла полюбившаяся народом микросхема ШИМ - TL494.

Блок питания этот был АТХ на 200 Вт фирмы уже не помню какой. Особо не важно. Поскольку товарищу "горело", каскад УНЧ был просто куплен. Это был моно усилитель на TDA7294, который может выдать 100 Вт в пике, что вполне устраивало. Усилителю требовалось двухполярное питание +-40В.

Убираем всё лишнее и ненужное в развязанной (холодной) части БП, оставляем формирователь импульсов и цепь ОС. Диоды Шоттки ставим более мощные и на более высокое напряжение (в переделанном блоке питания они были на 100 В). Так же ставим электролитические конденсаторы по вольтажу превосходящие требуемое напряжение вольт на 10-20 для запаса. Благо, место есть, где разгуляться.

На фото смотреть с осторожностью: далеко не все элементы стоят:)

Теперь основная "переделываемая деталь" - трансформатор. Есть два варианта:

  • разобрать и перемотать под конкретные напряжения;
  • спаять обмотки последовательно, регулируя выходное напряжение с помощью ШИМ

Я не стал заморачиваться и выбрал второй вариант.

Разбираем его и паяем обмотки последовательно, не забывая сделать среднюю точку:

Для этого выводы трансформатора были отсоеденены, прозвонены и скручены последовательно.

Для того, чтобы видеть: ошибся я обмоткой при последовательном соединении или нет, генератором пускал импульсы и смотрел, что получалось на выходе осциллографом.

В конце этих манипуляций я соединил все обмотки и убедился в том, что со средней точки они имеют одинаковый вольтаж.

Ставим на место, рассчитываем цепь ОС на TL494 под 2,5V с выхода делителем напряжения на вторую ногу и включаем последовательно через лампу на 100Вт. Если всё заработает хорошо - добавляем в цепочку гирлянды ещё одну, а затем ещё одну стоваттную лампу. Для страховки от несчастных разлётов деталек:)

Лампа, как предохранитель

Лампа должна мигнуть и потухнуть. Крайне желательно иметь осциллограф, чтобы иметь возможность посмотреть, что творится на микросхеме и транзисторах раскачки.

Попутно, тем кто не умеет пользоваться даташитами - учимся. Даташит и гугл помогают лучше форумов, если есть прокачанные навыки "гугление" и "переводчик с альтернативной точкой зрения".

Примерную схему блока питания нашёл в интернете. Схема очень даже простая (обе схемы можно сохранить в хорошем качестве):

В конечном итоге она получилась приблизительно вот такой, но это очень грубое приближение, не хватает много деталей!

Конструктив колонки был согласован и сопряжён с блоком питания и усилителем. Получилось просто и симпатично:

Справа - под обрезанным радиатором для видеокарты и компьютерным кулером находится усилитель, слева - его блок питания. Блок питания выдавал стабилизированные напряжения +-40 В со стороны плюсового напряжения. Нагрузка была что-то около 3,8 Ом (в колонке два динамика). Поместилось компактно и работает на ура!

Изложение материала достаточно не полное, упустил много моментов, так как дело было несколько лет назад. В качестве помощи к повторению могу порекомендовать схемы от мощных автомобильных усилителей низкой частоты - там есть двухполярные преобразователи, как правило, на этой же микросхеме - tl494.

Фото счастливого обладателя этого девайса:)

Так символично держит эту колонку, почти как автомат АК-47... Чувствует надёжность и скорый уход в армию:)

Напоминаем, что нас можно найти также в группе Вконтакте, где на каждый вопрос обязательно будет дан ответ!