Схема плавного розжига и затухания светодиодов. Схема плавного включения Плавное включение 12 вольт

: лампочки, при их высокой цене, быстро ломаются. Из-за большой экономии при производстве и некачественного люминофора, они дают весьма неприятный для глаз свет, разбавленный, к тому же, ультрафиолетом. Всё это заставляет вновь вернуться к проверенным, хорошим лампам накаливания.

Однако, большая экономия при их производстве и здесь наложила свой отпечаток. Лампочки стали настолько некачественными, что нередко перегорают при первом же включении, либо работают очень недолгое время, вплоть до нескольких недель. Затем - неизбежное перегорание.

В связи с этим фактом, а также с обещанным запретом на производство ламп накаливания , сам собой возникает вопрос о продлении срока их службы. Начнём с очень краткой теории. Почему перегорает лампочка , причём делает она это именно в момент включения? Всё очень просто. В момент включения нить накала лампы холодная, следовательно, сопротивление её мало. При подаче напряжения возникает бросок тока. По мере разогрева нити, её сопротивление увеличивается и ток уменьшается. Но тот, самый первый бросок тока, и приводит к перегоранию нити, особенно если учесть, что лампа произведена с экономией всего, чего только можно. Задача вырисовывается простая: нужно уменьшить пусковой ток. В идеале - сделать его плавно нарастающим от 1% до 100%. В этом случае получится ещё и эстетическое удовольствие от вида плавно разгорающейся лампы.

Изучение готовой продукции в магазинах позволило сделать печальный вывод: китайские друзья не смогли освоить производство подобных защитных устройств, которые бы работали так, как надо. Разумеется, такие устройства есть в продаже, но все, что попались нам, глючили одинаковым образом: при включении происходила вспышка лампы, затем она гасла и только потом начинала плавно разгораться. Как Вы понимаете, вспышка в начале сводит на нет всё дальнейшее действо.

Изучение конструкций, предлагаемых в интернете, также дало весьма печальный результат: нет ни одной нормальной схемы устройства защиты ламп накаливания. Под видом оных в радиолюбительских журналах выдаются различные поделки, которые слишком далеки от того, что нужно. В лучшем случае, они на несколько секунд отсекают одну полуволну сетевого напряжения, снижая напряжение на лампе в момент включения. Но мерцание в этот момент - вещь совершенно недопустимая для зрения людей, особенно - дома! Конструкции же, дающие плавное разжигание, построены на полевом транзисторе, загнанном в линейный режим, который включен в диагональ диодного моста. А это - нагрев и лишнее падение напряжения. Нужно ли оно нам?

В итоге было решено придумать собственный вариант, который бы удовлетворял основным условиям:
1. Плавное включение лампы от 1% до 100%
2. Возможность регулирования времени разгорания
3. Минимальные нагрев коммутационного элемента и падение напряжения на элементах силовой части схемы

Как удалось реализовать эти пункты:
1. Фазоимпульсное регулирование
2. Программное задание значения переменных
3. Применение симистора (триака) в качестве единственного элемента между сетью и лампой

Принцип и схемы - типичные для любого диммера на микроконтроллере. От этих схем практически целиком взята аппаратная часть: это - правильное управление симистором через оптопару, а также детектор перехода сетевого напряжения через ноль на оптопаре.

Как работает устройство: микроконтроллер ATtiny13A получает прерывание в момент перехода сетевого напряжения через ноль в начале каждого полупериода. В процедуре обработки прерывания он уменьшает время паузы до формирования импульса открытия симистора. Таким образом с каждым прерыванием симистор открывается всё раньше, на всё большее время. В конце на вывод управления симистором подаётся логическая единица и микроконтроллер прекращает реагировать на прерывания. Программно можно задать любую скорость включения лампы. В базовом варианте это время составляет около двух секунд.

Процесс работы представлен на виртуальной осциллограмме (все напряжения смасштабированы для удобства). Красная синусоида - это сетевое напряжение. Жёлтые импульсы - срабатывание детектора перехода через ноль. Голубые импульсы - открытие симистора.

Схема устройства защиты ламп накаливания представлена ниже. Как уже было сказано, она представляет собой типичный диммер, который программно плавно увеличивает мощность от минимума до максимума.


В схему введена цепочка защиты сети от помех (резистор 100 Ом и конденсатор 10н параллельно симистору), возникающих при фазоимпульсном регулировании в начале работы. Микроконтроллер ATtiny13A питается от бестрансформаторного источника на гасящем конденсаторе.

Резистор помехоподавляющей цепочки 100 Ом должен иметь мощность 0,5Вт, гасящий резистор перед диодным мостом детектора ноля на 82к - 1Вт. Токоограничительный резистор на 300 Ом в цепи питания микроконтроллера должен иметь мощность 2Вт, гасящий конденсатор на 470н в этой же цепи должен быть на напряжение 630 вольт.


Печатная плата нарисована фломастером, вытравлена медным купоросом , и содержит всего два недочёта, устранённых с помощью проводков. Выведены сигналы для внутрисхемного программирования. Малый размер позволяет разместить устройство защиты прямо в люстре. Размеры платы можно ещё уменьшить, если развести её более компактно.


Внимание! Устройство гальванически связано с сетью, поэтому работать, соблюдая технику безопасности, не прикасаясь руками к схеме.

Прошивки (прошивать на Internal RC 9,6MHz):
UP 19.06.2014 Устройство встроено в люстру 1 июня 2014 года. На этот момент в ней находились две поработавших лампочки. 19 июня добавлена одна новая лампочка. Попробуем собрать некую статистику по срокам службы ламп.

UP 24.11.2014 Упрощена схема устройства: убраны помехозащитная цепочка и опторазвязка симистора.

В связи с этим уменьшены размеры печатной платы


Файл Eagle: soft_start_2.brd


Через полчаса работы с прошивкой v2.0: R1 (SMD 2512), R2 (0.25Вт), D3 - тёплые, T1 - горячий (без радиатора, нагрузка - 150 Вт). Мощность резистора R2 должна быть больше, как рекомендовано в первом варианте схемы.

В этом варианте обнаружился досадный глюк: в момент включения симистор на мгновение иногда открывается (приблизительно в 20% случаев). Иногда этого мгновения хватает, чтобы еле заметно разогреть нить лампы. Не критично, но, всё-таки, это - глюк. Первой же строкой программы поставлено выставление логического нуля на управляющий электрод, однако это не помогает. Причина такого поведения - контроллер или симистор. Попытка решения реализована в прошивке версии 2.1.

UP 15.01.2015 Упрощённый вариант устройства введён в работу. Проверяем.

UP 28.09.2015 Первоначальный (полный) вариант сегодня сломался: в одной из лампочек всё-таки перегорела нить накала, образовалась дуга, что привело к значительному повышению потребляемого тока и выходу из строя симистора. Вариантов доработки два: установка предохранителя или программный контроль тока. По поводу второго пока думаем.

Исходник для Bascom:

$regfile = "attiny13a.dat" $crystal = 9600000 " управление симистором Config Portb.4 = Output "Portb.4 = 0 " детектор нуля Config Int0 = Falling On Int0 Imp Config Timer0 = Timer , Prescale = 1024 "переполнение за 0,032 сек On Timer0 Pulse Dim W As Byte Dim I As Byte Enable Interrupts Enable Timer0 "Start Timer0 Enable Int0 W = 200 "минимальный накал при старте I = 0 Do Loop End " прерывание от детектора нуля " чем большее значение W, тем быстрее переполнится таймер Imp: Timer0 = W Start Timer0 Incr I If I = 5 Then Incr W I = 0 End If If W = 255 Then Stop Timer0 Disable Timer0 Disable Int0 Disable Interrupts Portb.4 = 1 " если нужно отправить МК в сон Powerdown End If Return " управление симистором Pulse: "переполнение таймера Stop Timer0 "останавливаем таймер Portb.4 = 1 "включение симистора Waitus 100 Portb.4 = 0 "выключение оптосимистора Return

Если к устройству будет интерес, проект будет развиваться и совершенствоваться. Пожалуйста, выражайте интерес, ставя лайки статье в социальных сетях (кнопки в конце статьи).

Принцип работы схемы:

Управляющий «плюс» поступает через диод 1N4148 и резистор 4,7 кОм на базу транзистора КТ503. При этом транзистор открывается, и через него и резистор 68 кОм начинает заряжаться конденсатор. Напряжение на конденсаторе плавно растет, и далее через резистор 10 кОм поступает на вход полевого транзистора IRF9540. Транзистор постепенно открывается, плавно увеличивая напряжение на выходе схемы. При снятии управляющего напряжения транзистор КТ503 закрывается. Конденсатор разряжается на вход полевого транзистора IRF9540 через резистор 51 кОм. После окончания процесса разряда конденсатора схема перестает потреблять ток и переходит в режим ожидания. Потребляемый ток в этом режиме незначителен.

Схема с управляющим минусом:

Отмечена распиновка IRF9540N

Схема с управляющим плюсом:



Отмечена распиновка IRF9540N и KT503

В этот раз изготавливать схему решил методом ЛУТ (лазерно-утюжная технология). Делал я это первый раз в жизни, сразу скажу, что ничего сложного нет. Для работы нам понадобится: лазерный принтер, глянцевая фотобумага (или страница глянцевого журнала) и утюг.

К О М П О Н Е Н Т Ы:

Транзистор IRF9540N
Транзистор KT503
Выпрямительный диод 1N4148
Конденсатор 25V100µF
Резисторы:
- R1: 4.7 кОм 0.25 Вт
- R2: 68 кОм 0.25 Вт
- R3: 51 кОм 0.25 Вт
- R4: 10 кОм 0.25 Вт
Односторонний стеклотекстолит и хлорное железо
Клеммники винтовые, 2-х и 3-х контактные, 5 мм

При необходимости, изменить время розжига и затухания светодиодов можно подбором номинала сопротивления R2, а также подбором ёмкости конденсатора.


Р А Б О Т А:
?????????????????????????????????????????
?1? В этой записи подробно покажу, как изготавливать плату с управляющим плюсом. Плата с управляющим минусом делается аналогично, даже чуть проще из-за меньшего количества элементов. Отмечаем на текстолите границы будущей платы. Края делаем чуть больше, чем рисунок дорожек, а затем вырезаем. Существует много способов резки текстолита: ножовкой по металлу, ножницами по металлу, с помощью гравера и так далее.

Я с помощью канцелярского ножа сделал бороздки по намеченным линиям, далее выпилил ножовкой и обточил края напильником. Также пробовал использовать ножницы по металлу – оказалось гораздо проще, удобнее и без пыли.

Далее прошкуриваем заготовку под водой наждачной бумагой с зернистостью P800-1000. Затем сушим и обезжириваем поверхность платы 646 растворителем с помощью безворсовой салфетки. После этого нельзя руками прикасаться к поверхности платы.

2? Далее с помощью программы SprintLayot открываем и печатаем на лазерном принтере схему. Печатать необходимо только слой с дорожками без обозначений. Для этого в программе при печати слева вверху в разделе “слои” снимаем ненужные галочки. Также при печати в настройках принтера выставляем высокую четкость и максимальное качество изображения. Программу и чуть доработанные мной схемы залил для Вас на Яндекс.Диск.

С помощью малярного скотча приклеиваем на обычный лист А4 страницу глянцевого журнала/глянцевую фотобумагу (если их размеры меньше А4) и печатаем на ней нашу схему.

Я пробовал использовать кальку, страницы глянцевого журнала и фотобумагу. Удобнее всего, конечно, работать с фотобумагой, но в отсутствии последней и страницы журнала вполне сгодятся. Калькой же пользоваться не советую – рисунок на плате очень плохо пропечатался и получится нечётким.

3? Теперь прогреваем текстолит и прикладываем нашу распечатку. Затем утюгом с хорошим прижимом проутюживаем плату в течение нескольких минут.

Теперь даем плате полностью остыть, после чего опускаем в ёмкость с холодной водой на несколько минут и аккуратно избавляемся от бумаги на плате. Если целиком не отдирается, то скатываем потихоньку пальцами.

Затем проверяем качество пропечатанных дорожек, и плохие места подкрашиваем тонким перманентным маркером.



4? С помощью двустороннего скотча приклеиваем плату на кусочек пенопласта и помещаем в раствор хлорного железа на несколько минут. Время вытравливания зависит от многих параметров, поэтому периодически достаем и проверяем нашу плату. Хлорное железо используем безводное, разводим в теплой воде согласно пропорциям, указанным на упаковке. Чтобы ускорить процесс травления можно периодически покачивать ёмкость с раствором.

После того, как ненужная медь стравилась – отмываем плату в воде. Затем с помощью растворителя или наждачки счищаем тонер с дорожек.

5? Затем необходимо просверлить дырочки для монтажа элементов платы. Для этого я использовал бормашинку (гравер) и сверла диаметром 0.6 мм и 0.8 мм (из-за разной толщины ножек элементов).

6? Далее нужно облудить плату. Есть множество различных способов, я решил воспользоваться одним из самых простых и доступных. С помощью кисточки смазываем плату флюсом (например ЛТИ-120) и паяльником лудим дорожки. Главное не держать жало паяльника на одном месте, иначе возможен отрыв дорожек при перегреве. Берем на жало больше припоя и ведем им вдоль дорожки.

7? Теперь напаиваем необходимые элементы согласно схеме. Для удобства в SprintLayot распечатал на простой бумаге схему с обозначениями и при пайке сверял правильность расположения элементов.

8? После пайки очень важно полностью смыть флюс, в противном случае могут быть коротыши между проводниками (зависит от применяемого флюса). Сначала рекомендую тщательно протереть плату 646 растворителем, а потом хорошо промыть щеткой с мылом и высушить.

После сушки подключаем «постоянный плюс» и «минус» платы к питанию («управляющий плюс» не трогаем), затем вместо светодиодной ленты подсоединяем мультиметр и проверяем, нет ли напряжения. Если хоть какое-то напряжение все-таки присутствует, значит где-то коротит, возможно плохо смыли флюс.

Ф О Т О Г Р А Ф И И:

В некоторых случаях возникает необходимость в регулировании или управлении яркостью свечения одной или нескольких ламп. Для этого существует специальная схема плавного включения ламп накаливания, позволяющая полностью контролировать этот процесс. В настоящее время, разработано и применяется большое количество подобных устройств. Все они имеют собственные положительные и отрицательные стороны. Некоторые из них отличаются большими размерами, незначительным сроком службы.

Отдельные конструкции могут иметь излишне увеличенное число компонентов, низкий коэффициент полезного действия. Однако, существуют схемы, практически лишенные этих недостатков и прекрасно выполняющие все необходимые функции. Для того, чтобы правильно выбрать наиболее оптимальный вариант, нужно знать принцип и порядок работы таких устройств.

Принцип работы плавного включения

Как правило, качественные современные устройства отличаются компактностью и могут подключаться в разрыв любых проводов, независимо от того, фаза это или ноль. Поэтому, при наличии уже действующей схемы освещения, устройство плавного включения может быть подключено без особых проблем. При желании, сам прибор размешается непосредственно внутри корпуса люстры, настольной лампы или бра.

Основными существующими компонентами являются лампа накаливания и сам выключатель. Все остальные подключения строятся вокруг них, играя дополнительную роль. В таких схемах может использоваться и более одной лампы накаливания. В этом случае, они соединяются параллельно, а их суммарный ток не должен быть больше допустимого тока . В противном случае, симистор просто перегорит. Включение симистора в цепь производится в разрыв провода, расположенный между выключателем. При выключенном симисторе, конденсатор разряжен, а напряжения на нем нет вообще.

При включении симистора, конденсатор начинает заряжаться. В результате, происходит открытие динистора за счет увеличения прилагаемого напряжения. После этого, открывается второй симистор, что приводит к увеличению яркости лампы накаливания. Весь этот процесс управляется с помощью интегратора.

Уменьшение или увеличение скорости, с какой нарастает яркость свечения, осуществляется путем подбора . При стандартном сопротивлении в 300 килоом, полная яркость лампы накаливания наступит в течение 10 секунд. Для того. Чтобы полностью разрядить конденсаторы, применяются два резистора. Разрядка производится при отключенном выключателе, а устройство готовится к новому включению.

Когда работает схема плавного включения ламп накаливания, напряжение на них составляет всего 200 вольт при стандартном напряжении в сети 220-230 вольт. Это позволяет значительно увеличить срок службы таких ламп.

Плавное включение лампы накаливания

Экономия ресурсов – принцип рационального хозяина. Это можно отнести к аккуратному обращению с электроприборами. Например, с лампами накаливания, которые имеют свойство часто выходить из строя.

Чтобы обеспечить долговечность службы «лампы Ильича», стоит прибегнуть к использованию простейшей конструкции под названием блок защиты. Его можно собрать в домашних условиях или же приобрести в магазине.

Блоки плавного включения имеют разные ограничения на мощность. Потому при покупке лучше удостовериться, что данная модель способна выдержать высокие скачки напряжения. То есть прибор должен иметь предельный запас на 30% больше, чем подает ваша сеть.

Также важно знать общий показатель мощности всех ламп в доме. Диапазон мощности блоков, которые продаются сегодня, от 150 до 1000 ватт.

Чем больше данный допустимый показатель, тем больше размеры аппарата. Учитывайте и это, так как вам нужно найти место для установки блока. Стоимость приборов защиты колеблется в пределах 200-400 рублей.

Где установить блок защиты?

Блоки устанавливают непосредственно для каждой лампы индивидуально. Лучше помешать их в полость под , где спрятана проводка. Так как блок имеет небольшие размеры, то он поместится везде. Установить их можно как самостоятельно, если разбираетесь в электрике, так и с помощью специалиста.

Также можно использовать один блок на несколько ламп. Например, если в потолке встроена подсветка из множества светильников или люстра с цоколями.

Перед тем, как приступить к , следует досконально разобраться в устройстве аппарата, чтобы корректно выявить возможные неисправности, и придерживаться типового порядка проведения ремонтных работ.

Для пайки существует возможность собрать термовоздушную станцию самостоятельно в домашних условиях. Как это сделать, узнайте . Для эксплуатации такого инструмента нужно уметь правильно .

Допустимый вариант установки в распределительной коробке. Обычно туда помещают мощные модели, которые будут охватывать целую цепь электрических ламп в доме. Если у вас установлен также трансформатор для понижения мощности, то блок должен стоять в цепи первым, то есть основной поток 220 В предназначен только ему. А уж после раздача на всю частную сеть.

Важно! Помещайте приборы так, чтобы в случае замены, ремонта с легкостью добраться до них.

Лучше избегать прочного заклеивания обоями, гипсокартоном (в потолок из которого эффективно помещать ) и штукатуркой место, где расположен блок плавного включения.

Монтаж схемы блока защиты и лампы накаливания

Подключают прибор в цепь следующим образом:

  • вход блока защиты подсоединяют от фазы перед лампой накаливания (идет от выключателя), он исполняет роль посредника между кабелем, что питает лампу;
  • выход от блока соединяют с другим концом кабеля, что ведет непосредственно к лампе.


При включении лампочки накаливания можно наблюдать на протяжении 3 секунд, как свет из яркой вспышки преобразуется в тусклый поток света. Это означает, что блок в цепи работает успешно.

Если измерить электронным мультимером напряжение на входе и выходе, то можно увидеть разницу уменьшения напряжения.

Ничего сложного в установке блоков плавного включения нет. Не стоит забывать о технике безопасности при работе с электрическими цепями, а также о правильном расчете мощности для приобретения прибора.

Краткое видео об особенностях плавного включения ламп накаливания 220 В

В любой электрической схеме, каждый датчик или элемент осуществляет определенную работу. В данном случае, это устройства, обеспечивающие плавный запуск различных источников света. Важно понимать, что самые высокие перегрузки, лампочки испытывают во время их запуска. Так как после подачи на них напряжения, сильно изменяется температура и напряжение, которое скачет от 0 до 220 Вольт. Для того, чтобы снизить нагрузки, используют различные датчики и устройства, которые встраивают в схему.

Лампы накаливания электрические: виды

Не смотря на то, что в настоящее время достаточно популярно стало использование в различных осветительных приборах галогенных, люминесцентных и светодиодных ламп (светодиодов), огромная часть устройств работает на основе ламп накаливания. Данные источники света, подразделяют на виды по различным параметрам.

Основные параметры:

  • Предназначение;
  • Технические характеристики (устройство).

По назначению, лампы накаливания, можно разделить на два вида. Для работы в различных бытовых осветительных приборах, и в автомобиле. Как правило, в бытовых приборах освещения (в квартире)применяют лампы накаливания 220 В, 24 В и 12 Вольт. В авто (для фар), применяют только низковольтные источники света.

Обратите внимание! В настоящее время, лампы накаливания, являются самыми дешевыми источниками света.

К техническим характеристикам ламп, относят различные показатели. Например, Лампы подразделяют по форме колбы. Существуют Шарообразные, цилиндрические и трубчатые колбы. Колбы бывают матовыми, прозрачными и зеркальными.


Стоит отметить, что к основным техническим характеристикам ламп, относят ее мощность, которая варьируется в пределах 25 – 150 Ватт.

Рабочее напряжение лам составляет (в зависимости от вида лампы) от 12 до 230 Вольт. Лампы накаливания отличаются и видом цоколя. Например, цоколь может быть с резьбой или в виде штифта, одним или двумя контактами.

Резьбовые цоколи различают по диаметру и маркируют следующим образом: (Е 14) – диаметр цоколя 14 мм, (Е 27) и (Е40).

Медленное (плавное) включение ламп накаливания

Плавный пуск или розжиг ламп накаливания, легко сделать своими руками. Для этого существует не одна схема. В некоторых случаях, после отключения подачи напряжения, делают и плавное выключение ламп.

Основные схемы:

  • Тиристорная;
  • На симисторе;
  • С использованием микросхем.

Тиристорная схема подключения, состоит из нескольких основных элементов. Диод, в количестве четырех штук. Диоды в данной схеме образуют диодный мост. Для обеспечения нагрузки, используют лампочки накаливания.

К плечам выпрямителя, подключается тиристор и цепочка сдвигающая. В этом случае, используют диодный мост, так как это обусловлено работой тиристора.


После того, произведен запуск, и на блок подано напряжение, электричество, проходит через нить накаливания лампы и подается на диодный мост. Далее, при помощи тиристора, емкость электролита заряжается.

После того, как достигнута необходимая величина напряжения, тиристор открывается и через него начинает проходить ток от лампы. Таким образом, происходит плавный запуск лампы накаливания.

Обратите внимание! В качестве составных элементов в различных схемах, могут использоваться отличные друг от друга детали. Такие как: mac 97 a 6, m 51957 b, av 2025 p, mc908 qy 4 pce,ba 8206 ba 4, ba 3126 n, 20 wz 51, 4n 37.

Схема с использованием симистора простая, так как симисторы является силовым ключом в схеме. Для регулировки тока управляющего электрода, используют резистор. Время срабатывания, задается при помощи нескольких элементов схемы, резистора и емкости, питающиеся от диода.

Для работы нескольких мощных ламп накаливания, используют различные микросхемы. Это достигается путем добавления в схему дополнительного силового симистора. Стоит отметить, что данные схемы работают не только с обычными лампами, но и с галогенными.

Схема плавного розжига светодиодов на полевиках

Существует огромное количество схем для плавного розжига светодиодов. Некоторые являются сложными и могут состоять из дорогостоящих деталей. Но можно собрать и простую схему, которая обеспечит корректную и долгую работу данного источника света.

Для сборки потребуется:

  • Полевой транзистор – IRF 540;
  • R1 – сопротивление с номиналом 10 кОм;
  • R2 – сопротивление от 30 кОм до 68 кОм;
  • R3 – сопротивление от 20 до 51 кОм;
  • Конденсатор с емкостью 220 мкФ.

Так как сопротивление R1 (регулятор), задает ток затвора, то для данного транзистора, достаточно сопротивления в 10 кОм. За плавный пуск светодиодов, отвечает сопротивление R2, то его номинальное сопротивление необходимо подобрать в пределах от 30 до 68 кОм. Данный параметр зависит от предпочтений.

Медленное затухание светодиодов обеспечивает сопротивление R3, поэтому его номинал должен составлять от 20 до 51 кОм. Емкостные параметры конденсатора варьируются в пределах от 220 до 470 мкФ.


Обратите внимание! Предельное напряжение конденсатора должно быть не менее 16 Вольт.

К мощностным параметрам полевого транзистора относят напряжение и силу тока. Напряжение на контактах достигает 100 Вольт, а мощность до 23 Ампер.

После того, как через выключатель подано напряжение на схему, протекающий через резистор R2 ток, начинает заряжать конденсатор. Так как зарядка занимает некоторое количество времени, то в данном случае, производится плавное открытие транзистора.

При отключении подачи питания, конденсатор, плавно отдает заряд сопротивлениям, что позволяет выключать светодиоды плавно.

Плавный розжиг галогенных ламп в автомобиле

В различных авто, перегрузкам подвергаются не только механические детали, их испытывают и элементы, составляющие электрические схемы. Поэтому, для увеличения продолжительности работы оборудования, в схемы включают различные устройства, обеспечивающие плавный запуск ламп.

Основные параметры для установки блоков плавного розжига:

  • Вибрация;
  • Температурные и электрические перепады.

Лампы с повышенной светоотдачей, согласно устройству, очень чувствительны к незначительным перепадам напряжения в электрической схеме. Данные перепады варьируются от 10 до 13 Вольт.

Обратите внимание! Большинство галогеновых ламп выходят из строя во время запуска. Так как перепад напряжения составляет от 0 до 13 Вольт.

Лучшим решением, будет установка блока плавного розжига. Установка возможна на фары ближнего и дальнего света, Стоит отметить, что данное реле, играет роль защиты источника света.

Важно понимать, что установка одного блока на лампы, отвечающие за головной свет, не рекомендуется, так как при выходе из строя блока, работать перестанут обе лампы. Установка одного блока, возможна толк на дополнительное освещение.

Блок, выполнен в виде реле, оснащенного пятью контактами для подключения. Основными элементами блока, являются контакты реле (силовая часть) и блок управления.

Работа данного блока, осуществляется следующим образом. После того, как на тридцатый контакт подано напряжение, блок осуществляющий управление схемой, параллельно подключает ключ. Далее ключ, используя импульсы по нарастающей, начинает замыкать между собой 30 и 87 контакты.

После двух секунд работы, данные контакты полностью замыкаются, после чего управляющий блок, подает напряжение на реле. Далее, 30 и 87 контакты размыкаются, и 30 и 88 замыкаются. Если подать напряжение на дополнительный 86 контакт, то при выключении фар, галогеновые лампы будут медленно затухать.

Схема плавного включения ламп накаливания на 220 В (видео)

Теперь вы понимаете, что встраивание в различные электрические схемы дополнительных элементов не только может обеспечить их плавный запуск, но и выступить в качестве защитного механизма, который обеспечит длительную работу ламп.