Что такое натяжение воды. Старт в науке. Теперь переходим к фильтрам и поверхностному натяжению воды

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

В окружающем нас мире наряду с тяготением, упругостью и трением действует еще одна сила, на которую мы обычно не обращаем внимание. Эта сила действует вдоль касательной к поверхностям всех жидкостей. Силу, которая действует вдоль поверхности жидкости перпендикулярно линии, ограничивающей эту поверхность, стремится сократить её до минимума, называют силой поверхностного натяжения . Она сравнительно мала, ее действие никогда не вызывает мощных эффектов. Тем не менее, мы не можем налить воду в стакан, вообще ничего не можем проделать с какой-либо жидкостью без того, чтобы не привести в действие силы поверхностного натяжения. К эффектам, называемым поверхностным натяжением, мы настолько привыкли, что не замечаем их. Удивительно разнообразны проявления поверхностного натяжения жидкости в природе и технике. В природе и в нашей жизни они играют немаловажную роль. Без них мы не могли бы писать гелиевыми ручками, картриджив принтерах сразу же ставили бы большую кляксу, опорожнив весь свой резервуар. Нельзя было бы намылить руки - пена не образовалась бы. Слабый дождик промочил бы нас насквозь, а радугу нельзя было бы видеть ни при какой погоде. Поверхностное натяжение собирает воду в капли и благодаря поверхностному натяжению можно выдуть мыльный пузырь. Используя правило «Вовремя удивляться» бельгийского профессора Плато для исследователей, рассмотрим в работе необычные опыты.

Цель работы: экспериментально проверить проявления поверхностного натяжения жидкости, определить коэффициент поверхностного натяжения жидкостей методом отрыва капель

    Изучить учебную, научно-популярную литературу, использовать материалы в сети «Интернет» по теме «Поверхностное натяжение»;

    проделать опыты, доказывающие, что собственная форма жидкости - шар;

    провести эксперименты с уменьшением и увеличением поверхностного натяжения;

    сконструировать и собрать экспериментальную установку, с помощью которой определить коэффициент поверхностного натяжения некоторых жидкостей методом отрыва капель.

    обработать полученные данные и сделать вывод.

Объект исследования: жидкости.

Основная часть. Поверхностное натяжение

Рис 1. Г. Галилей

Ногочисленные наблюдения и опыты показывают, что жидкость может принимать такую форму, при которой ее свободная поверхность имеет наименьшую площадь. В своем стремлении сократиться поверхностная пленка придавала бы жидкости сферическую форму, если бы не притяжение к Земле. Чем меньше капля, тем большую роль играют силы поверхностного натяжения. Поэтому маленькие капельки росы на листьях деревьев, на траве близки по форме к шару, при свободном падении дождевые капли почти строго шарообразны. Стремление жидкости сокращаться до возможного минимума, можно наблюдать на многих явлениях, которые кажутся удивительными. Еще Галилей задумывался над вопросом: почему капли росы, которые он видел по утрам на листьях капусты, принимают шарообразную форму? Утверждение, что жидкость не имеет своей формы, оказывается не совсем точным. Собственная форма жидкости - шар, как наиболее ёмкая форма. Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. Каждая молекула жидкости, также как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах, и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей. Из-за сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные (неустойчивые) упорядоченные группы, содержащие несколько молекул. 1

Рис 2. Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества: 1 - вода; 2 - лед

А как можно объяснить самопроизвольное сокращение поверхности жидкости? Молекулы на поверхности и в глубине жидкости находятся в разных условиях. На каждую молекулу внутри жидкости действуют силы притяжения со стороны соседних молекул, окружающих ее со всех сторон. Результирующая этих сил равна нулю. Над поверхностью жидкости находится пар, плотность которого во много раз меньше плотности жидкости, и взаимодействием молекул пара с молекулами жидкости можно пренебречь. Молекулы, которые находятся на поверхности жидкости, притягиваются только молекулами, находящимися внутри жидкости. Под действием этих сил молекулы поверхностного слоя втягиваются внутрь, число молекул на поверхности уменьшается, площадь поверхности сокращается. Но не все молекулы могут с поверхности уйти внутрь жидкости, этому препятствуют силы отталкивания, возникающие при уменьшении расстояний между молекулами. При определенных расстояниях между молекулами, втягиваемыми внутрь, и молекулами, находящимися под поверхностью, силы взаимодействия становятся равными нулю, процесс сокращения поверхности прекращается. На поверхности остается такое число молекул, при котором ее площадь оказывается минимальной для данного объема жидкости. Так как жидкость текуча, она принимает такую форму, при которой число молекул на поверхности минимально, а минимальную поверхность при данном объеме имеет шар, то есть капля жидкости принимает форму, близкую шаровой.Проще всего уловить характер сил поверхностного натяжения, наблюдая образование капли. Всмотритесь внимательно, как постепенно растет капля, образуется сужение - шейка, - и капля отрывается. Не нужно много фантазии, чтобы представить себе, что вода как бы заключена в эластичный мешочек, и этот мешочек разрывается, когда вес превышает его прочность. В действительности, конечно, ничего кроме воды, в капле нет, но сам поверхностный слой воды ведёт себя, как растянутая эластичная пленка. Такое же впечатление производит пленка мыльного пузыря.

Опыт №1

Тремление жидкости к минимуму потенциальной энергии можно наблюдать с помощью мыльных пузырей. Мыльная пленка представляет собой двойной поверхностный слой. Если выдуть мыльный пузырь, а потом прекратить надувание, то он станет уменьшаться в объёме, выжимая из себя струю воздуха.

Поверхностное натяжение - явление молекулярного давления на жидкость, вызываемое притяжением молекул поверхностного слоя к молекулам внутри жидкости 5

Опыт Плато (1849г.)

Рис. 4. Ж.Плато

Оводом, побудившим бельгийского профессора к опытам, был случай. Нечаянно он налил в смесь спирта и воды небольшое количество масла, и оно приняло форму шара. Размышляя над этим фактом, Плато наметил ряд опытов, которые впоследствии блестяще были выполненными его друзьями и учениками. В своем дневнике он написал для исследователей правило: «Вовремя удивляться». Я решила исследовать опыт Плато, но в другом варианте: использовать в опыте подсолнечное масло и подкрашенную марганцовую воду.

Опыт, доказывающий, что однородная жидкость принимает форму с минимальной свободной поверхностью

Вариант опыта Плато №2

1) В мензурку налили подсолнечное масло.

2) Глазной пипеткой капнули в подсолнечное масло каплю подкрашенной марганцовой воды диаметром приблизительно 5мм.

) Наблюдали шарики воды разного размера, медленно падающие на дно и принимающие овальную приплюснутую форму (Фото 2).

5) Наблюдали, как капля принимает правильную форму шара (Фото 2).

Вывод : Жидкость, притягивая молекулы поверхностного слоя, сжимает саму себя. Овальная приплюснутая форма объясняется тем, что вес капли, которая не смешивается с маслом, больше выталкивающей силы. Правильная форма шара объясняется тем, что капля плавает внутри масла: вес капли уравновешивается выталкивающей силой.

При свободном падении, в состоянии невесомости капли дождя практически имеют форму шара. В космическом корабле шарообразную форму принимает и достаточно большая масса жидкости.

Коэффициент поверхностного натяжения

В отсутствии внешней силы вдоль поверхности жидкости действует сила поверхностного натяжения, которая сокращает до минимума площадь поверхности пленки. Сила поверхностного натяжения - сила, направленная по касательной к поверхности жидкости, перпендикулярно участку контура, ограничивающего поверхность, в сторону ее сокращения.

Ơ - коэффициент поверхностного натяжения - это отношение модуля F силы поверхностного натяжения, действующей на границу поверхностного слоя ℓ, к этой длине есть величина постоянная, не зависящая от длины ℓ. Коэффициент поверхностного натяжения зависит от природы граничащих сред и от температуры. Его выражают в ньютонах на метр (Н / м).

Опыты с уменьшением и увеличением

Фото 3

оверхностного натяжения

Опыт №3

    Прикоснулись к центру поверхности воды кусочком мыла.

    Кусочки пенопласта начинают двигаться от центра к краям сосуда (Фото 3).

    Капали в центр сосуда бензином, спиртом, моющим средством «Fairy».

Вывод: Поверхностное натяжение данных веществ меньше, чем у воды.

Эти вещества используются для удаления грязи, жирных пятен, сажи, т.е. не растворимых в воде веществ.Из-за достаточно высокого поверхностного натяжения вода сама по себе не обладает очень хорошим чистящим действием. Например, вступая в контакт с пятном, молекулы воды притягиваются друг к другу больше, чем к частицам нерастворимой грязи.Мыло и синтетические моющие средства (СМС) содержат вещества, уменьшающие поверхностное натяжение воды. Первое мыло, самое простое моющее средство, было получено на Ближнем Востоке более 5000 лет назад. Поначалу оно использовалось, главным образом, для стирки и обработки язв и ран. И только в 1 веке н.э. человек стал мыться с мылом.

В начале 1-го века мыло появилось на свет.

От грязи спасло человека и стал он чистым с юных лет.

Я говорю вам про мыло, что вскоре породило: шампунь, гель, порошок.

Стал чистым мир, как хорошо!

Рис 5. Ф. Гюнтер

Моющими средствами называются натуральные и синтетические вещества с очищающим действием, в особенности мыло и стиральные порошки, применяемые в быту, промышленности и сфере обслуживания. Мыло получают в результате химического взаимодействия жира и щелочи. Скорее всего, оно было открыто по чистой случайности, когда над костром жарили мясо, и жир стекал на золу, обладающую щелочными свойствами. Производство мыла имеет давнюю историю, а вот первое синтетическое моющее средство (СМС) появилось в 1916г., его изобрел немецкий химик Фриц Гюнтер для промышленных целей. Бытовые СМС, более или менее безвредные для рук, стали выпускаться 1933г. С тех пор разработан целый ряд синтетических моющих средств (СМС) узкого назначения, а их производство стало важной отраслью химической промышленности.

Именно из-за поверхностного натяжения вода сама по себе не обладает достаточным чистящим действием. Вступая в контакт с пятном, молекулы воды притягиваются друг к другу, вместо того чтобы захватывать частицы грязи, другими словами они не смачивают грязь.

Мыло и синтетические моющие средства содержат вещества, повышающие смачивающие свойства воды за счет уменьшения силы поверхностного натяжения. Эти вещества называются поверхностно-активными (ПАВ), поскольку действуют на поверхности жидкости.

Сейчас производство СМС стало важной отраслью химической промышленности. Эти вещества называют поверхностно-активным веществом (ПАВ), поскольку действуют на поверхности жидкости. Молекулы ПАВ можно представить в виде головастиков. Головами они «цепляются» за воду, а «хвостами» за жир. Когда ПАВ смешивают с водой, их молекулы на поверхности обращены «головами» вниз, а «хвостами» наружу. Раздробив таким образом поверхность воды, эти молекулы значительно уменьшают эффект поверхностного натяжения, тем самым помогая воде проникнуть в ткань. Этими же «хвостиками» молекулы ПАВ (Рис 6) захватывают попадающиеся им молекулы жира. 2

Опыт №4

1.Налили в блюдце молоко так, чтобы оно закрыло дно (Фото 4)

2. Капнули на поверхность молока 2 капля зеленки

3. Наблюдали, как зеленка «увлекается» от центра к краям. Две капли зеленки покрывают большую часть поверхности молока! (Фото 5)

Вывод: поверхностное натяжение зеленки, намного меньше, чем молока.

4. На поверхность зеленки капнули жидкость для мытья посуды «Fairy», мы увидели, как эта жидкость растеклась по всей поверхности.(Фото 6)

Вывод: поверхностное натяжение моющего средства меньше, чем зеленки.

Опыт№5

    В широкий стеклянный сосуд налили воду.

    На поверхность бросили кусочки пенопласта.

    Прикоснулись к центру поверхности воды кусочком сахара.

    Усочки пенопласта начинают двигаться от краев сосуда к центру (Фото 7).

Вывод: поверхностное натяжение водного раствора сахара больше, чем чистой воды.

Опыт№6

Удаление с поверхности ткани жирового пятна

Смочили бензином ватку и этой ваткой смочили края пятна (а не само пятно). Бензин уменьшает поверхностное натяжение, поэтому жир собирается к центру пятна и оттуда его можно удалить, этой же ваткой если же смачивать, само пятно, то оно может увеличиться в размерах вследствие уменьшения поверхностного натяжения.

Для экспериментального определения значения поверхностного натяжения жидкости можно использовать процесс образования и отрыва капель, вытекающих из капельницы.

Краткая теория методаотрыва капель

Малый объем жидкости сам по себе принимает форму, близкую к шару, так как благодаря малой массе жидкости мала и сила тяжести, действующая на нее. Этим объясняется шарообразная форма небольших капель жидкости. На рис.1 приведены фотографии, на которых показаны различные стадии процесса образования и отрыва капли. Фотография получена с помощью скоростной киносъемки, капля растет медленно, можно считать, что в каждый момент времени она находится в равновесии. Поверхностное натяжение вызывает сокращение поверхности капли, оно стремится придать капле сферическую форму. Сила тяжести располагает центр тяжести капли как можно ниже. В результате капля оказывается вытянутой (рис.7а).

Рис. 7. а б в г

Процесс образования и отрыва капель

Чем больше капля, тем большую роль играет потенциальная энергия силы тяжести. Основная масса по мере роста капли собирается внизу и у капли образуется шейка (рис.7б). Сила поверхностного натяжения направлена вертикально по касательной к шейке и она уравновешивает силу тяжести, действующую на каплю. Теперь достаточно капле совсем немного увеличиться и силы поверхностного натяжения уже не уравновешивают силу тяжести. Шейка капли быстро сужается (рис.7в) и в результате капля отрывается (рис.7г).

Метод измерения коэффициента поверхностного натяжения некоторых жидкостей основывается на взвешивании капель. В случае медленного вытекания жидкости из малого отверстия размер образующихся капель зависит от плотности жидкости, коэффициента поверхностного натяжения, размера и формы отверстия, а также от скорости истечения. При медленном вытекании смачивающей жидкости из вертикальной цилиндрической трубки образующаяся капля имеет форму, показанную на рисунке 8. Радиус r шейки капли связан с наружным радиусом трубки R соотношением r = kR (1)

где k - коэффициент, зависящий от размеров трубки и скорости вытекания.

Момент отрыва вес капли должен быть равен равнодействующей сил поверхностного натяжения, действующих по длине, равной протяженности контура шейки в самой ее узкой части. Таким образом, можно записать

Mg = 2πrơ (2)

Подставляя величину радиуса шейки r из равенства (1) и решая его, получим

Ơ =mg/2πkR (3)

Для определения массы капли, некоторое число n капель взвешивают в стакане известного веса. Если масса стаканчика без капель и с каплями будет соответственно М 0 и М, то масса одной капли

Подставляя последнее выражение в формулу (3) и вводя вместо радиуса трубки ее диаметр d, получим расчетную формулу

ơ = ((M-M0)g)/πkdn 3 (4)

Исследовательская работа «Определение коэффициента поверхностного натяжения некоторых жидкостей методом отрыва капель»

Цель исследования : определить коэффициент поверхностного натяжения жидкости методом отрыва капель некоторых жидкостей. Приборы : установка для измерения коэффициента поверхностного натяжения, весы, разновес, стаканчик, штангенциркуль, секундомер. Материалы : моющие средства: «Fairy», «Aos», молоко, спирт, бензин, растворы порошков: «Миф», «Persil», шампуни «Fruttis» , «Pantene », «Schauma» и «Fruttis» , гели для душа «Sensen », «Монпансье» и «Discover ».

Описание прибора .

Для определения коэффициента поверхностного натяжения собрали установку, состоящую из штатива, на котором установили бюретку с исследуемой жидкостью. На конце бюретки укрепили наконечник-трубку, на конце которой образуется капля. Взвешивание капель производили в специальном стаканчике.

Ход исследования

    С помощью штангенциркуля измерили диаметр наконечника-трубки три раза и вычислили среднее значение d.

    Взвесили на весах чистый сухой стаканчик (М 0).

    С помощью краника бюретки добились скорости вытекания капель

15 капель в минуту.

    Отлили из бюретки в стаканчик 60 капель жидкости, считая точно количество отлитых капель.

    Взвесили стаканчик с жидкостью. (М)

    Подставили полученные значения в формулу ơ = ((M-M0)g)/πkdn

    Вычислили коэффициент поверхностного натяжения.

    Провели опыт три раза

    Вычислили среднее значение коэффициента поверхностного натяжения.

Коэффициент поверхностного натяжения в системе СИ измеряется в Н/м.

Таблица №1

Результаты определения коэффициента поверхностного натяжения (Н/м)

Жидкость

Коэффициент поверхностного натяжения

Измеренное

Табличное

Спирт этиловый

Молоко (2,5)

Молоко (коровье домашнее)

Раствор порошка «Миф»

Раствор порошка «Persil»

Моющее средство «Fairy»

Моющее средство «Aos»

Вывод: Из исследованных кухонных моющих средств, при всех остальных одинаковых параметрах, влияющих на качество «отмывания», лучше использовать средство «Fairy ». Из исследованных стиральных порошков «Миф », т.к. именно их растворы обладают наименьшим поверхностным натяжением. Следовательно, первое средство («Fairy ») лучше помогает смывать нерастворимые в воде жиры с посуды, являясь эмульгатором - средством, облегчающим получение эмульсий (взвесей мельчайших частиц жидкого вещества в воде). Второе («Миф ») лучше отстирывает бельё, проникая в поры между волокнами тканей. Заметим, что при использовании кухонных моющих средств, мы заставляем вещество (в частности жир) хотя бы на некоторое время растворится в воде, т.к. происходит «дробление» его на мельчайшие частицы. За это время рекомендуется смыть нанесенное моющее средство струей чистой воды, а не ополаскивать посуду через какое-то время в ёмкости. Кроме того исследовали поверхностное натяжение шампуней и гелей для душа. Из-за достаточно высокой вязкости этих жидкостей сложно точно определить коэффициент поверхностного натяжения их, но зато можно сравнить. Были исследованы (методом отрыва капель) шампуни «Pantene », «Schauma» и «Fruttis» , а также гели для душа «Sensen », «Монпансье» и «Discover ».

Вывод:

    Поверхностное натяжение уменьшается в шампунях на ряду «Fruttis» - «Schauma» - «Pantene», в гелях - в ряду «Монпансье» - «Discover» - «Senses».

    Поверхностное натяжение шампуней меньше поверхностного натяжения гелей (Например «Pantene » < «Senses » на 65 мН/м), что оправдывает их назначение: шампуни - для мытья волос, гели - для мытья тела.

    При всех остальных одинаковых характеристиках, влияющих на качество мытья, из исследованных шампуней лучше использовать «Pantene» (Рис. 9), из исследованных гелей для душа - «Senses»(Рис.10).

Метод отрыва капель, не будучи очень точным, однако, используется в медицинской практике. Этим методом определяют в диагностических целях поверхностное натяжение спинномозговой жидкости, желчи и т.д.

Заключение

1. Получены экспериментальные подтверждения теоретических выводов, доказывающие, что однородная жидкость принимает форму с минимальной свободной поверхностью

2. Проведены эксперименты с уменьшением и увеличением поверхностного натяжения, результаты которых доказали, чтомыло и синтетические моющие средства содержат вещества, повышающие смачивающие свойства воды за счет уменьшения силы поверхностного натяжения.

3. Для определения коэффициента поверхностного натяжения жидкостей

а) изучена краткая теория метода отрыва капель;

б) сконструирована и собрана экспериментальная установка;

в) вычислены средние значения коэффициента поверхностного натяжения различных жидкостей, сделаны выводы.

4. Результаты экспериментов и исследования представлены в виде таблицы и фотографий.

Работа над проектом позволила мне приобрести более широкие знания по разделу физики «Поверхностное натяжение».

Мне хочется закончить свой проект словами великого ученого физика

А. Эйнштейна :

«Мне достаточно испытать ощущение вечной тайны жизни, осознавать и интуитивно постигать чудесную структуру всего сущего и активно бороться, чтобы схватить пусть даже самую малую крупинку разума, который проявляется в Природе»

Список использованных источников и литературы

    http://www.physics.ru/

    http://greenfuture.ru/

    http://www.agym.spbu.ru/

    Буховцев Б.Б., Климонтович Ю. Л., Мякишев Г.Я., Физика, учебник для 9 класса средней школы - 4-е издание - М.: Просвещение, 1988 г. - 271 с.

    Касьянов В.А., Физика, 10 класс, учебник для общеобразовательных учебных заведений, М.: Дрофа, 2001г. - 410 с.

    Пинский А.А. Физика: учебник. Пособие для 10 классов с углубленным изучением физики. М.: Просвещение, 1993г. - 416 с.

    Юфанова И.Л. Занимательные вечера по физике в средней школе: книга для учителя. - М.: Просвещение, 1990г. -215с

    Чуянов В.Я., Энциклопедический словарь юного физика, М.: Педагогика, 1984г. - 350 с.

1 1 http://www.physics.ru/

2 http://greenfuture.ru

ОПРЕДЕЛЕНИЕ

Поверхностное натяжение - стремление жидкости сократить свою свободную поверхность, т.е. уменьшить избыток своей потенциальной энергии на границе раздела с газообразной фазой.

Опишем механизм возникновения поверхностного натяжения в жидкостях. Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Рассмотрим две молекулы A и B. Молекула A находится внутри жидкости, молекула B - на ее поверхности (рис. 1). Молекула A окружена другими молекулами жидкости равномерно, поэтому силы, действующие на молекулу A со стороны молекул, попадающих в сферу межмолекулярного взаимодействия, скомпенсированы, или, другими словами, их равнодействующая равна нулю. Молекула B с одной стороны окружена молекулами жидкости, а с другой стороны - молекулами газа, концентрация которых значительно ниже, чем концентрация молекул жидкости. Так как со стороны жидкости на молекулу B действует гораздо больше молекул, чем со стороны газа, равнодействующая всех межмолекулярных сил уже не будет равна нулю и будет направлена внутрь объема жидкости. Таким образом, для того чтобы молекула из глубины жидкости попала в поверхностный слой, нужно совершить работу против не скомпенсированных межмолекулярных сил. А это означает, что молекулы приповерхностного слоя, по сравнению с молекулами внутри жидкости, обладают избыточной потенциальной энергией, которая называется поверхностной энергией .

Очевидно, чем больше площадь поверхности жидкости, тем больше таких молекул, которые обладают избыточной потенциальной энергией, а значит тем больше поверхностная энергия. Этот факт можно записать в виде следующего соотношения:

где поверхностная энергия жидкости, площадь свободной поверхности жидкости и коэффициент пропорциональности, который называется коэффициентом поверхностного натяжения.

Коэффициент поверхностного натяжения

ОПРЕДЕЛЕНИЕ

Коэффициент поверхностного натяжения - это физическая величина, которая характеризует данную жидкость и численно равна отношению поверхностной энергии к площади свободной поверхности жидкости:

Единицей измерения коэффициента поверхностного натяжения в системе СИ является .

Коэффициент поверхностного натяжения жидкости зависит: 1) от природы жидкости (у «летучих жидкостей таких, как эфир, спирт, бензин, коэффициент поверхностного натяжения меньше, чем у «нелетучих - воды, ртути); 2) от температуры жидкости (чем выше температура, тем меньше поверхностное натяжение); 3) от свойств газа, который граничит с данной жидкостью; 4) от наличия поверхностно-активных веществ таких, как мыло или стиральный порошок, которые уменьшают поверхностное натяжение. Также следует отметить, что коэффициент поверхностного натяжения не зависит от площади свободной поверхности жидкости .

Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Вследствие поверхностного натяжения жидкость всегда принимает форму с минимальной поверхностью. Если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать форму сферы, как, например, капля воды, мыльный пузырь. Также будет вести себя вода в невесомости. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называютсясилами поверхностного натяжения .

Поэтому коэффициент поверхностного натяжения можно также определить как модуль силы поверхностного натяжения, действующей на единицу длины контура, ограничивающего свободную поверхность жидкости:

Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности (т.е. от того, как пленка деформирована), а силы поверхностного натяженияне зависятот площади поверхности жидкости. Если положить швейную иглу на поверхность воды, поверхность прогнется и не даст ей утонуть. Действием сил поверхностного натяжения можно объяснить скольжение легких насекомых таких, например, как водомерки, по поверхности водоемов (рис.2). Лапка водомерки деформирует водную поверхность, увеличивая тем самым ее площадь. Вследствие этого возникает сила поверхностного натяжения, которая стремится уменьшить подобное изменение площади. Равнодействующая сил поверхностного натяжения будет направлена вверх, компенсируя при этом силу тяжести.

На действии сил поверхностного натяжения основан принцип действия пипетки (рис.3). Капелька, на которую действует сила тяжести, вытягивается вниз, тем самым увеличивая площадь своей поверхности. Естественно, возникают силы поверхностного натяжения, равнодействующая которых противоположна направлению силы тяжести, и которые не дают капельке растягиваться. При нажатии на резиновый колпачок пипетки, создается дополнительное давление, которое помогает силе тяжести, в результате чего капля падает вниз.

Примеры решения задач

ПРИМЕР 1

Задание Тонкое алюминиевое кольцо радиусом 7,8 см соприкасается с мыльным раствором. Каким усилием можно оторвать кольцо от раствора? Температуру раствора считать комнатной. Масса кольца 7 г.
Решение Выполним рисунок.

На кольцо действуют следующие силы: сила тяжести , сила поверхностного натяжения и внешняя сила .

Так как кольцо соприкасается с раствором и внешней и внутренней сторонами, то сила поверхностного натяжения равна:

Длина контура, ограничивающего поверхность жидкости в данном случае равна длине окружности кольца:

С учетом последнего сила поверхностного натяжения:

Условие отрыва кольца от поверхности раствора имеет вид:

Из таблиц коэффициент поверхностного натяжения мыльного раствора при комнатной температуре .

Ускорение свободного падения

Переведем единицы в систему СИ: радиус кольца масса кольца кг.

Вычислим:

Ответ Для того, чтобы оторвать кольцо от раствора. необходимо приложить силу 0,11 Н.

ПРИМЕР 2

Задание Какое количество энергии освобождается при слиянии мелких водяных капель радиусом мм в одну каплю радиусом 2 мм?
Решение Изменение потенциальной энергии поверхностного слоя капель, обусловленное уменьшением площади поверхности капель при их слиянии в одну каплю равно:

где площадь поверхности всех мелких капель, площадь поверхности большой капли, коэффициент поверхностного натяжения воды.

Очевидно, что:

где r — радиус маленькой капли, R — радиус большой капли, n — количество маленьких капель.

Масса маленькой капли:

масса большой капли:

Так как маленькие капли сливаются в одну большую каплю, можно записать:

откуда количество маленьких капель:

а площадь поверхности всех маленьких капель:

Теперь найдем количество энергии, которое освобождается при слиянии капель:

Из таблиц коэффициент поверхностного натяжения воды .

Переведем единицы в систему СИ: радиус маленькой капли радиус большой капли .

Вычислим:

Ответ При слиянии капель освобождается энергия Дж.

ПРИМЕР 3

Задание Определить коэффициент поверхностного натяжения масла, плотность которого равна , если при пропускании через пипетку масла получено 304 капли. Диаметр шейки пипетки 1,2 мм.
Решение Капля масла отрывается от пипетки, когда сила тяжести равна силе поверхностного натяжения:

Поверхностное натяжение питьевой воды

Важным параметром питьевой воды является поверхностное натяжение. Оно определяет степень сцепления между молекулами воды и форму поверхности жидкости, а так же определяет степень усвояемости воды организмом.

Уровень испаряемости жидкости зависит от того, насколько сильно сцеплены между собой ее молекулы. Чем сильнее молекулы притягиваются друг к другу, тем жидкость менее летуча. Чем меньше показатель поверхностного натяжения жидкости, тем более она летуча. Самым низким поверхностным натяжением обладают спирты и растворители. Это, в свою очередь, определяет их активность — способность взаимодействовать с другими веществами.

Зрительно поверхностное натяжение можно представить следующим образом: если медленно наливать в чашку чай до краев, то какое-то время он не будет выливаться через край и в проходящем свете можно увидеть, что над поверхностью жидкости образовалась тончайшая пленка, которая не дает чаю выливаться. Она набухает по мере доливания, и только при, как говорится, «последней капле» жидкость выливается через край.

Чем более «жидкая» вода используется для питья, тем меньше энергии требуется организму для разрыва молекулярных связей и насыщения клеток водой.

Единицей измерения поверхностного натяжения является дин/см.

Водопроводная вода имеет степень поверхностного натяжения до 73 дин/см, а внутри- и внеклеточная жидкость около 43 дин/см, поэтому клетке требуется большое количество энергии на преодоление поверхностного натяжения воды.

Образно говоря, вода бывает более «густая» и более «жидкая». Желательно, чтобы в организм поступала более «жидкая» вода, тогда клеткам не надо будет тратить энергию на преодоление поверхностного натяжения. Вода с низким поверхностным натяжением более биологически доступна. Она легче вступает в межмолекулярные взаимодействия.

Вы задумывались когда нибудь о том, «Почему горячая вода отмывает грязь лучше, чем холодная?». Это происходит потому что с ростом температуры воды снижается ее поверхностное натяжение. Чем ниже поверхностное натяжение воды, тем лучшим растворителем она является. Коэффициент поверхностного натяжения зависит от химического состава жидкости, среды, с которой она граничит, температуры. С ростом температуры (уменьшается и при критической температуре обращается в нуль. В зависимости от силы взаимодействия молекул жидкости с частицами твёрдого тела, соприкасающегося с ней, возможно смачивание или не смачивание жидкостью твёрдого тела. В обоих случаях поверхность жидкости вблизи границы с твёрдым телом искривляется.

Поверхностное натяжение воды можно понизить, например, добавляя биологически активные вещества или нагревая жидкость. Чем ближе будет значение поверхностного натяжение воды, которую вы употребляете для питья, к 43 дин/см, тем с меньшими энергетическими затратами она может быть усвоена вашим организмом.

Не знаете где можно взять правильную воду ? Я подскажу!

Обратите внимание:

Нажатие на кнопку «Узнать » не ведет к каким-либо финансовым тратам и обязательствам.

Вы лишь получите информацию о доступности правильной воды в Вашем регионе ,

а так же получите уникальную возможность бесплатно стать членом клуба здоровых людей

В § 7.1 были рассмотрены опыты, свидетельствующие о стремлении поверхности жидкости к сокращению. Это сокращение вызывается силой поверхностного натяжения.

Силу, которая действует вдоль поверхности жидкости перпендикулярно линии, ограничивающей эту поверхность, и стремится сократить ее до минимума, называют силой поверхностного натяжения.

Измерение силы поверхностного натяжения

Чтобы измерить силу поверхностного натяжения, проделаем следующий опыт. Возьмем прямоугольную проволочную рамку, одна сторона которой АВ длиной l может перемещаться с малым трением в вертикальной плоскости. Погрузив рамку в сосуд с мыльным раствором, получим на ней мыльную пленку (рис. 7.11, а). Как только мы вытащим рамку из мыльного раствора, проволочка АВ сразу же придет в движение. Мыльная пленка будет сокращать свою поверхность. Следовательно, на проволочку АВ действует сила, направленная перпендикулярно проволочке в сторону пленки. Это и есть сила поверхностного натяжения.

Чтобы помешать проволочке двигаться, надо к ней приложить некоторую силу. Для создания этой силы можно прикрепить к проволочке мягкую пружину, закрепленную на основании штатива (см. рис. 7.11, о). Сила упругости пружины вместе с силой тяжести, действующей на проволочку, в сумме составят результирующую силу Для равновесия проволочки необходимо, чтобы выполнялось равенство
, где - сила поверхностного натяжения, действующая на проволочку со стороны одной из поверхностей пленки (рис. 7.11, б).

Отсюда
.

От чего зависит сила поверхностного натяжения?

Если проволочку переместить вниз на расстояние h , то внешняя сила F 1 = 2 F совершит работу

(7.4.1)

Согласно закону сохранения энергии эта работа равна изменению энергии (в данном случае поверхностной) пленки. Начальная поверхностная энергия мыльной пленки площадью S 1 равна U п 1 = = 2σS 1 , так как пленка имеет две поверхности одинаковой площади. Конечная поверхностная энергия

где S 2 - площадь пленки после перемещения проволочки на расстояние h . Следовательно,

(7.4.2)

Приравнивая правые части выражений (7.4.1) и (7.4.2), получим:

Отсюда сила поверхностного натяжения, действующая на границу поверхностного слоя длиной l , равна:

(7.4.3)

Направлена сила поверхностного натяжения по касательной к поверхности перпендикулярно границе поверхностного слоя (перпендикулярно проволочке АВ в данном случае, см. рис. 7.11, а).

Измерение коэффициента поверхностного натяжения

Существует много способов измерения поверхностного натяжения жидкостей. Например, поверхностное натяжение а можно определить, пользуясь установкой, изображенной на рисунке 7.11. Мы рассмотрим другой способ, не претендующий на большую точность результата измерений.

Прикрепим к чувствительному динамометру медную проволочку, изогнутую так, как показано на рисунке 7.12, a. Подставим под проволочку сосуд с водой так, чтобы проволочка коснулась поверхности воды (рис. 7.12, б) и «прилипла» к ней. Будем теперь медленно опускать сосуд с водой (или, что то же, поднимать динамометр с проволочкой). Мы увидим, что вместе с проволочкой поднимается обволакивающая ее водяная пленка, а показание динамометра при этом постепенно увеличивается. Оно достигает максимального значения в момент разрыва водяной пленки и «отрыва» проволочки от воды. Если из показаний динамометра в момент отрыва проволочки вычесть ее вес, то получится сила F , равная удвоенной силе поверхностного натяжения (у водяной пленки две поверхности):

где l - длина проволочки.

При длине проволочки 1 = 5 см и температуре 20 °С сила оказывается равной 7,3 · 10 -3 Н. Тогда

Результаты измерений поверхностных натяжений некоторых жидкостей приведены в таблице 4.

Таблица 4

Из таблицы 4 видно, что у легкоиспаряющихся жидкостей (эфира, спирта) поверхностное натяжение меньше, чем у нелетучих жидкостей, например у ртути. Очень мало поверхностное натяжение у жидкого водорода и особенно у жидкого гелия. У жидких металлов поверхностное натяжение, наоборот, очень велико.

Различие в поверхностном натяжении жидкостей объясняется различием в силах межмолекулярного взаимодействия.

Силы притяжения между молекулами на поверхности жидкости удерживают их от движения за ее пределы.

Молекулы жидкости испытывают силы взаимного притяжения — на самом деле, именно благодаря этому жидкость моментально не улетучивается. На молекулы внутри жидкости силы притяжения других молекул действуют со всех сторон и поэтому взаимно уравновешивают друг друга. Молекулы же на поверхности жидкости не имеют соседей снаружи, и результирующая сила притяжения направлена внутрь жидкости. В итоге вся поверхность воды стремится стянуться под воздействием этих сил. По совокупности этот эффект приводит к формированию так называемой силы поверхностного натяжения, которая действует вдоль поверхности жидкости и приводит к образованию на ней подобия невидимой, тонкой и упругой пленки.

Одним из следствий эффекта поверхностного натяжения является то, что для увеличения площади поверхности жидкости — ее растяжения — нужно проделать механическую работу по преодолению сил поверхностного натяжения. Следовательно, если жидкость оставить в покое, она стремится принять форму, при которой площадь ее поверхности окажется минимальной. Такой формой, естественно, является сфера — вот почему дождевые капли в полете принимают почти сферическую форму (я говорю «почти», потому что в полете капли слегка вытягиваются из-за сопротивления воздуха). По этой же причине капли воды на кузове покрытого свежим воском автомобиля собираются в бусинки.

Силы поверхностного натяжения используются в промышленности — в частности, при отливке сферических форм, например ружейной дроби. Каплям расплавленного металла просто дают застывать на лету при падении с достаточной для этого высоты, и они сами застывают в форме шариков, прежде чем упадут в приемный контейнер.

Можно привести много примеров сил поверхностного натяжения в действии из нашей будничной жизни. Под воздействием ветра на поверхности океанов, морей и озер образуется рябь, и эта рябь представляет собой волны, в которых действующая вверх сила внутреннего давления воды уравновешивается действующей вниз силой поверхностного натяжения. Две эти силы чередуются, и на воде образуется рябь, подобно тому как за счет попеременного растяжения и сжатия образуется волна в струне музыкального инструмента.

Будет жидкость собираться в «бусинки» или ровным слоем растекаться по твердой поверхности, зависит от соотношения сил межмолекулярного взаимодействия в жидкости, вызывающих поверхностное натяжение, и сил притяжения между молекулами жидкости и твердой поверхностью. В жидкой воде, например, силы поверхностного натяжения обусловлены водородными связями между молекулами (см. Химические связи). Поверхность стекла водой смачивается, поскольку в стекле содержится достаточно много атомов кислорода, и вода легко образует гидрогенные связи не только с другими молекулами воды, но и с атомами кислорода. Если же смазать поверхность стекла жиром, водородные связи с поверхностью образовываться не будут, и вода соберется в капельки под воздействием внутренних водородных связей, обусловливающих поверхностное натяжение.

В химической промышленности в воду часто добавляют специальные реагенты-смачиватели — сурфактанты , — не дающие воде собираться в капли на какой-либо поверхности. Их добавляют, например, в жидкие моющие средства для посудомоечных машин. Попадая в поверхностный слой воды, молекулы таких реагентов заметно ослабляют силы поверхностного натяжения, вода не собирается в капли и не оставляет на поверхности грязных крапин после высыхания (см.