Схема простого измерителя статического напряжения. Измерение статического заряда. Приборы для измерения электростатического поля - какой прибор лучше купить

Что такое электростатическое поле? Приборы для измерения электростатического поля. Какой прибор для электростатики лучше будет купить?

Приборы для измерения электростатического поля - какой прибор лучше купить?

Электростатическое поле - это поле, созданное неподвижными в пространстве и неизменяемыми во времени электрическими зарядами (в отсутствии электрических токов). Если в пространстве имеется система заряженных тел, то в каждой точке этого пространства существует силовое электрическое поле. Оно определяется через силу, действующую на пробный точечный заряд, помещённый в это поле. Этой силой и выражается величина электростатического поля, которая определяется средствами измерения электростатического поля. Единицей измерения в данном случае является вольт (В), киловольт (кВ) и т.д.

К типовым источникам электростатического поля относятся:

Установки с высоким напряжением;

Линии постоянного тока;

Экраны дисплеев, ТНП;

Синтетические материалы (ткани, покрытия).

В зависимости от поставленных задач измерители электростатического поля выделяют следующих типов:

Измерительные приборы электростатического поля в пространстве;

Средства измерения электростатического потенциала.

Ниже приведена сводная таблица приборов для измерения электростатического поля, которая способствует в определении оптимального комплекта под Ваши измерительные задачи и позволит ответить на вопрос какой именно купить измеритель электростатического поля с поверкой. Не мало важно и то, что там приведены цены на измерители электростатического поля - наглядно видно, во сколько Вам обойдется то или иное средство измерения и каким функционалом оно обладает.

Модель средства измерения электростатического поля: Область применения средства измерения электростатики: Диапазон измерения:

Цена, руб.

(с первичной поверкой)

Измерение эл.статичекого потенциала:

Измерение эл.статического

поля в свободном пространстве:

Измерение электризуемости тканей:
Измеритель электростатического поля СТ-01 да

(при наличии доп. опции)

от 0,3 до 180 кВ/м 48 000
Измеритель напряженности электростатического поля П3-80 с первичной поверкой нет да нет от 0,3 кВ/м до 200 кВ/м 53 000
Прибор для измерения электростатики ЭСПИ-301А да от 0,3 до 180 кВ/м 53 700
Измеритель электростатического потенциала экранов дисплеев ИЭСП-01(А) да нет от 0,1 кВ до 18 кВ 39 766
Прибор для измерения электростатического поля в свободном пространстве ИЭСП-01(Б) нет да от 1 кВ/м до 180 кВ/м 51 035
Универсальный измеритель электростатических полей ИЭСП-01(В) да

от 0,1 кВ до 18 кВ

от 1 кВ/м до 180 кВ/м

55 165
Измеритель напряженности электростатического поля ИЭСП-5Ц с первичной поверкой нет да от 1 до 1000 кВ/м Снят с производства
Измеритель электростатического поля ИЭСП-6 да нет от 0,1 до 10 кВ
Измеритель напряженности электростатического поля ИЭСП-7 нет да от 2 до 199,9
Измеритель электрических зарядов ПК2-3А да нет

1. Жидкокристаллический индикатор

2. Гнездо Ground (заземление)

3. Кнопка POWER (кнопка вкл./выкл)

4. Тестовая пластина из нержавеющей стали

5. Заземляющий провод с зажимом

6. Гнездо заземления прибора

7. Разъем для подключения сетевого адаптера

Проверка статического заряда тела человека тестером статического электричества АТР-9365

Заземлите прибор через разъем заземления на задней панели прибора с помощью заземляющего провода. Нажмите кнопку POWER для измерения статического заряда производимого человеческим телом.

Измерение электростатического напряжения человека тестером статического электричества АТР-9365

Коснитесь тестовой пластины из нержавеющей стали рукой. Отображенное на дисплее значение – это показания напряженности электростатического поля на теле человека. Если Вам необходимо снять электростатический заряд, пожалуйста, коснитесь гнезда “Ground” (заземление) и электростатический заряд будет разряжен.

Измерение разности электростатических потенциалов между двумя людьми тестром статическогонапряжения АТР-9365

Один человек касается тестовой пластины и не отпускает, другой человек также касается тестовой пластины. Значение, отображенное на дисплее, является разницей электростатических потенциалов между людьми.

Проверка исправности антистатического браслета тестером статического электричества АТР-9365

Перед измерением, потрите ноги о землю и коснитесь тестовой пластины. Если браслет неисправен или заземлен не достаточно хорошо, прибор отобразит некоторое значение электростатического заряда.

Правильная установка тестера статического электричества АТР-9365

Достаньте прибор, установите батарею и включите питание нажатием кнопки POWER . Прибор готов к работе.

Примечание: Для закрепления прибора на стене, выберите панель из токопроводящего материала и отметьте ориентировочные места установки крепежных винтов в соответствии с размерами и положением отверстий на задней панели прибора. Закрепите эту панель на стену и непосредственно на нее установите прибор.

Отображение значений статического напряжения на дисплее прибора АТР-9365

Диапазон напряжения прибора от 0 В до 19990 В. Измеренное значение напряжения соответствует значению напряжения, отображаемого на ЖК дисплее, умноженное на 10. Прибор во время измерения отображает величину статического напряжения и его полярность.

Индикаторы электрических полей могут быть использованы для индивидуальной защиты электромонтеров, при поиске мест повреждений электрических сетей. С их помощью определяется наличие электростатических зарядов в полупроводниковом, текстильном производствах, хранилищах легковоспламеняющихся жидкостей. При поиске источников магнитных полей, определении их конфигурации и исследовании полей рассеяния трансформаторов, дросселей и электродвигателей не обойтись без индикаторов магнитных полей.

Схема индикатора высокочастотных излучений показана на рис. 20.1. Сигнал с антенны попадает на детектор, выполненный на германиевом диоде. Далее через Г-образный LC-фильтр сигнал поступает на базу транзистора, в коллекторную цепь которого включен микроамперметр. По нему и определяется мощность высокочастотных излучений.

Для индикации низкочастотных электрических полей используют индикаторы с входным каскадом на полевом транзисторе (рис. 20.2 — 20.7). Первый из них (рис. 20.2) выполнен на основе мультивибратора [ВРЯ 80-28, Р 8/91-76]. Канал полевого транзистора является управляемым элементом, сопротивление которого зависит от величины контролируемого электрического поля. К затвору транзистора подключена антенна. При внесении индикатора в электрическое поле, сопротивление исток — сток полевого транзистора возрастает, и мультивибратор включается.

В телефонном капсюле раздается звуковой сигнал, частота которого зависит от напряженности электрического поля.

Следующие две конструкции по схемам Д. Болотника и Д. Приймака (рис. 20.3 и 20.4) предназначены для поиска неисправностей в новогодних электрических гирляндах [Р 11/88-56]. Индикатор (рис. 20.3) в целом представляет собой резистор с управляемым сопротивлением. Роль такого сопротивления опять же играет канал сток — исток полевого транзистора, дополненного двухкаскадным усилителем постоянного тока. Индикатор (рис. 20.4) выполнен по схеме управляемого низкочастотного генератора. Он содержит пороговое устройство, усилитель и детектор сигнала, наведенного в антенне переменным электрическим полем. Все эти функции выполняет один транзистор — VT1. На транзисторах VT2 и VT3 собран генератор низкой частоты, работающий в ждущем режиме. Как только антенну устройства приближают к источнику электрического поля, транзистор VT1 включает звуковой генератор.

Индикатор электрического поля (рис. 20.5) предназначен для поиска скрытой проводки, электрических цепей, находящихся под напряжением, индикации приближения к зоне высоковольтных проводов, наличия переменных или постоянных электрических полей [РаЭ 8/00-15].

В устройстве использован заторможенный генератор светозвуковых импульсов, выполненный на аналоге инжекционно-по-левого транзистора (VT2, VT3). При отсутствии электрического поля высокой напряженности сопротивление сток — исток полевого транзистора VT1 невелико, транзистор VT3 закрыт, генерация отсутствует. Ток, потребляемый устройством, составляет единицы, десятки мкА. При наличии постоянного или переменного электрического поля высокой напряженности сопротивление сток — исток полевого транзистора VT1 возрастает, и устройство начинает вырабатывать светозвуковые сигналы. Так, если в качестве антенны использован вывод затвора транзистора VT1, индикатор реагирует на приближение сетевого провода на расстояние около 25 мм.

Потенциометром R3 регулируется чувствительность, резистор R1 задает длительность светозвуковой посылки, конденсатор С1 — частоту их следования, а С2 определяет тембр звукового сигнала.

Для повышения чувствительности в качестве антенны может быть использован отрезок изолированного провода или телескопическая антенна. Для защиты транзистора VT1 от пробоя параллельно переходу затвор — исток стоит подключить стабилитрон или высокоомный резистор.

Индикатор электрических и магнитных полей (рис. 20.6) содержит релаксационный генератор импульсов. Он выполнен на биполярном лавинном транзисторе (транзистор микросхемы К101КТ1А, управляемый электронным ключом на полевом транзисторе типа КП103Г), к затвору которого подключена антенна. Для задания рабочей точки генератора (срыв генерации в отсутствии индицируемых электрических полей) используют резисторы R1 и R2. Генератор импульсов через конденсатор С1 нагружен на высокоомные головные телефоны. При наличии переменного электрического поля (или перемещении предметов, несущих электростатические заряды) на антенне и, соответственно, затворе полевого транзистора появляется сигнал переменного тока, что приводит к изменению электрического сопротивления перехода сток — исток с частотой модуляции. В соответствии с этим релаксационный генератор начинает генерировать пачки модулированных импульсов, а в головных телефонах будет прослушиваться звуковой сигнал.

Чувствительность прибора (дальность обнаружения токонесущего провода сети 220 В 50 Гц) составляет 15...20 см. В качестве антенны использован стальной штырь 300x3 мм. При напряжении питания 9 В ток, потребляемый индикатором в режиме молчания, составляет 100 мкА, в рабочем режиме — 20 мкА.

Индикатор магнитных полей (рис. 20.6) выполнен на втором транзисторе микросхемы. Нагрузкой второго генератора является высокоомный головной телефон. Сигнал переменного тока, снимаемый с индуктивного датчика магнитного поля L1, через переходной конденсатор С1 подается на базу лавинного транзистора, не связанную по постоянному току с другими элементами схемы («плавающая» рабочая точка). В режиме индикации переменного магнитного поля напряжение на управляющем электроде (базе) лавинного транзистора периодически изменяется, изменяется также и напряжение лавинного пробоя коллекторного перехода и, в связи с этим, частота и продолжительность генерации.

Индикатор (рис. 20.7) изготовлен на основе делителя напряжения, одним из элементов которого является полевой транзистор VT1, сопротивление перехода сток — исток которого определяется потенциалом управляющего электрода (затвора) с подключенной к нему антенной [Рк 6/00-19]. К резистивному делителю напряжения подключен релаксационный генератор импульсов на лавинном транзисторе VT2, работающий в ждущем режиме. Уровень начального напряжения (порог срабатывания), подаваемого на релаксационный генератор импульсов, устанавливается потенциометром R1.

Для предотвращения пробоя управляющего перехода полевого транзистора в схему введена защита (при отключении источника питания цепь затвор — исток закорочена). Повышение уровня громкости звукового сигнала достигается введением усилителя на биполярном транзисторе VT3. В качестве нагрузки выходного транзистора VT3 можно использовать низкоомный телефонный капсюль.

Для упрощения схемы высокоомный телефонный капсюль, например, ТОН-1, ТОН-2 (либо «среднеомный» — ТК-67, ТМ-2) может быть включен вместо резистора R3. В этом случае надобность в использовании элементов VT3, R4, С2 отпадает. Разъем, в который включается телефон, для снижения габаритов устройства, может одновременно служить выключателем питания.

При отсутствии входного сигнала сопротивление перехода сток — исток полевого транзистора составляет несколько сотен Ом, и напряжение, снимаемое с движка потенциометра на питание релаксационного генератора импульсов, мало. При появлении сигнала на управляющем электроде полевого транзистора сопротивление перехода сток — исток последнего возрастает пропорционально уровню входного сигнала до единиц, сотен кОм. Это приводит к увеличению напряжения, подаваемого на релаксационный генератор импульсов до величины, достаточной для возникновения колебаний, частота которых определяется произведением R4C1. Потребляемый устройством ток при отсутствии сигнала — 0,6 мА, в режиме индикации — 0,2...0,3 мА. Дальность обнаружения токонесущего провода сети 220 В 50 Гц при длине штыревой антенны 10 см составляет 10...100 см.

Индикатор высокочастотного электрического поля (рис. 20.8) [МК 2/86-13] отличается от аналога (рис. 20.1) тем, что его выходная часть выполнена по мостовой схеме, имеющей повышенную чувствительность. Резистор R1 предназначен для балансировки схемы (установки стрелки прибора на ноль).

Ждущий мультивибратор (рис. 20.9) использован для индикации сетевого напряжения [МК 7/88-12]. Индикатор работает при приближении его антенны к сетевому проводу (220 В) на расстояние 2...3 см. Частота генерации для приведенных на схеме номиналов близка к 1 Гц.

Индикаторы магнитных полей по схемам, представленным на рис. 20.10 — 20.13, имеют индуктивные датчики, в качестве которых может быть использован телефонный капсюль без мембраны, либо многовитковая катушка индуктивности с железным сердечником.

Индикатор (рис. 20.10) выполнен по схеме радиоприемника 2-V-0. Он содержит датчик, двухкаскадный усилитель, детектор с удвоением напряжения и показывающий прибор.

Индикаторы (рис. 20.11, 20.12) имеют светодиодную индикацию и предназначены для качественной индикации магнитных полей [Р 8/91-83; Р 3/85-49].

Более сложную конструкцию имеет индикатор по схеме И.П. Шелестова, изображенный на рис. 20.13. Датчик магнитного поля подключен к управляющему переходу полевого транзистора, в цепь истока которого включено сопротивление нагрузки R1. Сигнал с этого сопротивления усиливается каскадом на транзисторе VT2. Далее в схеме использован компаратор на микросхеме DA1 типа К554САЗ. Компаратор сравнивает уровни двух сигналов: напряжения, снимаемого с регулируемого резистивного делителя R4, R5 (регулятора чувствительности) и напряжения, снимаемого с коллектора транзистора VT2. На выходе компаратора включен светодиодный индикатор.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Приборы для измерения параметров статического
электричества

Электрические измерения необходимы для изучения причин и условий электризации и постоянного контроля электростатических величин: разности потенциалов U между заряженным телом и землей или заземленными предметами; поверхностной плотности электрических зарядов s и напряженности электрического поля Е .

Указателями электрических потенциалов служат различные механические (лепестковые, стрелочные, струнные, квадрантные) и электронные электрометры. В механических электрометрах измеряемый заряд подается на один из пары электродов, кулоновское взаимодействие которых фиксируется различными методами. Например, принцип действия квадрантных электрометров положен в основу электростатических вольтметров. Электростатический заряд воздействует на подвижный секторный электрод, который под воздействием кулоновских сил перемещается. По углу поворота судят о величине измеряемого напряжения

По условиям пожаро- и взрывобезопасности приборы для электростатических измерений во взрывоопасных зонах должны иметь соответствующий уровень и вид взрывозащиты, а их датчики (в частности, у переносных приборов) должны соответствовать требованиям электростатической искробезопасности. Датчик прибора считают искробезопасным для данной взрывоопасной смеси, если искровой разряд на него с металлического электрода, имеющего потенциал 50 кВ и емкость 60-100 пФ, вызывает воспламенение этой смеси с вероятностью не более 10 -3 (либо энергия этих зарядов, по крайней мере, в 2,5 раза меньше энергии воспламенения смеси).Так, датчик прибора ИСПИ-4 с отклонением электронного потока в вакууме покрыт толстым слоем диэлектрика (фторопластом), что обеспечивает электростатическую искробезопасность. В приборе СМ-2/С-59 взрывозащита достигнута путем заключения электростатического вольтметра С-53 во взрывонепроницаемый корпус, а специальное покрытие датчика (например, фторопласт) обеспечивает его электростатическую безопасность. Взрывобезопасность процесса измерения достигается в том случае, когда во взрывоопасной зоне применяется искробезопасный датчик, а сам прибор (например, статический вольтметр любого типа) устанавливается в невзрывоопасной зоне.

Устройства для заземления и контроля
цепи заземления средств транспорта и хранения ЛВЖ
и сжиженных горючих газов

Технологические процессы налива или слива нефтепродуктов и других взрывопожароопасных веществ химических, нефтехимических и нефтеперерабатывающих производств, предприятий снабжения нефтепродуктами, нефтебаз, складов ГСМ, автозаправочных станций (АЗС), автозаправочных комплексов (АЗК) и авто-газозаправочных станций (АГЗС) сопровождаются образованием и накоплением зарядов статического электричества. Зажигающая способность разрядов статического электричества нередко является вероятным источником зажигания пожаровзрывоопасной среды, что приводит к пожарам и взрывам, сопровождающимся материальными потерями и летальным травматизмом.

Экспериментальные и аналитические исследования показывают, что в летнее время в зоне заправки бензином на АЗС легковых и грузовых автомобилей взрывоопасная смесь горючих паров с воздухом может образоваться в объемах до 2,5 и до 8 м 3 соответственно. При сливе бензина из автоцистерн (АЦ) выходящая из дыхательной арматуры взрывоопасная паро-воздушная смесь может образоваться в объеме до 105 м 3 .

В подтверждение реальности пожарного риска такого рода следует отметить, что в разных регионах России происходят пожары при обращении с нефтепродуктами и сниженными горючими газами (СГГ). Например, 02.11.1997 г. крупный пожар 5-й степени сложности возник в Москве на
1-й улице Ямского Поля при сливе топлива в подземный резервуар.

Поэтому, на этих объектах средства защиты от опасных проявлений статического электричества должны применяться как одна из мер снижения пожарного риска. Заземляться и надежно электрически соединяться между собой должны наливные стояки эстакад, находящиеся под наливом железнодорожные цистерны и рельсы в пределах сливоналивного фронта. Перед проведением и в процессе сливоналивных операций заземлению также подлежат: автоцистерны, танкеры, самолеты и другие транспортные средства, а также средства транспорта и хранения нефтепродуктов или СГГ.

Несоответствующие требованиям, предъявляемым к электрооборудованию во взрывозащищенном исполнении, электрические контактные соединения и другие устройства для присоединения заземляющих проводников должны располагаться вне взрывоопасных зон (не менее 9 м от мест налива или слива) . При этом провода заземления сначала присоединяют к корпусу заземляемого объекта, а затем к заземляющему устройству. Отсоединение же их, что еще более важно для предупреждения искрообразования при размыкании цепи заземления с током случайного происхождения (гальваническим, блуждающим, обусловленным электромагнитной бурей или воздействием электромагнитного радиочастотного поля), следует осуществлять в обратном порядке.

Важно отметить, что существуют конструктивные различия устройств заземления АЦ, применяемых на нефтебазах и складах ГСМ и АЗК, от устройств их заземления на АЗС общего пользования и ведомственных пунктов заправки топливом. Подобные различия существуют и при оснащении АЦ заземляющими проводниками, конструктивно непригодными для применения при наливе топлива на нефтебазе (или на АЗК) или при сливе его на АЗС. Таким образом, нередко заземляющие устройства не обеспечивают требуемого уровня пожаровзрывобезопасности технологии сливоналивных операций топлива, ЛВЖ и СГГ.

В целях обеспечения требований пожарной безопасности разработаны и выпускаются устройства заземления автоцистерн (УЗА) типов: УЗА-2МК02, УЗА-2МК03, УЗА-2МК04, УЗА-2МК05, УЗА-2МК06. Данные устройства УЗА осуществляют одновременно и функции контроля заземленного состояния объектов защиты. Питание коммутационных устройств (по желанию заказчика) предусмотрено либо от промышленной цепи переменного тока с напряжением 220 В (например, УЗА-2МК04), либо от цепи постоянного тока с напряжением 12 В (УЗА-2МК05), либо от батареи аккумуляторов с напряжением 6,3 В, служащей автономным источником питания (УЗА-2МК03 и УЗА-2МК06).

УЗА соответствуют требованиям: ГОСТ 12.4.124-83 , ГОСТ Р 5250.0-2005 (МЭК 60079-0:2005) и др.

Общий вид устройств заземления автоцистерн представлен на рис. 9.3 а их основные технические характеристики приведены в табл. 9.3.

Рис. 9.3. Общий вид УЗА

На разработку и применение УЗА-2МК даны лицензии и разрешения Госгортехнадзора и сертификат о взрывозащищеннности Центра сертификации взрывозащищенного электрооборудования (ЦСВЭ). С учетом требований нормативных документов область применения УЗА-2МК – взрывоопасные зоны 1, 2, 2н. Применение той или иной модификации определяется технической оснащенностью сливоналивных эстакад нефтебаз и наливных пунктов, АЗС, АГЗС и АЗК.

Таблица 9.3

Технические характеристики устройств УЗА

Окончание табл. 9.3

УЗА-2МК04 и УЗА-2МК05 предназначены для заземления автоцистерн или других транспортных средств, для блокировки и запуска слива, исключающего (по желанию заказчика) техническую возможность проведения операции слива без предварительного подключения их к устройствам заземления и обеспечения эквипотенциальности электропроводящих узлов объекта защиты и сливного оборудования. Данные устройства обеспечивают также непрерывный контроль целостности электрической цепи заземления и ее величины сопротивления в Ом на участке «заземляемая емкость – заземляющее устройство» и осуществляют световую сигнализацию о состоянии данного участка электрической цепи. Устройства комплектуются универсальным проводом заземления со специальным зажимом для подключения УЗА к автоцистерне. Этот провод является принадлежностью УЗА, а его подключение к АЦ допускается только при разомкнутой коммутационной цепи УЗА специальной кнопкой в ее корпусе (рис. 9.3а и 9.3б).

Что такое статическое электричество

Статическое электричество возникает в случае нарушения внутриатомного или внутримолекулярного равновесия вследствие приобретения или потери электрона. Обычно атом находится в равновесном состоянии благодаря одинаковому числу положительных и отрицательных частиц - протонов и электронов. Электроны могут легко перемещаться от одного атома к другому. При этом они формируют положительные (где отсутствует электрон) или отрицательные (одиночный электрон или атом с дополнительным электроном) ионы. Когда происходит такой дисбаланс, возникает статическое электричество.


Электрический заряд электрона - (-) 1,6 х 10 -19 кулон. Протон с таким же по величине зарядом имеет положительную полярность. Статический заряд в кулонах прямо пропорционален избытку или дефициту электронов, т.е. числу неустойчивых ионов. Кулон - это основная единица статического заряда, определяющая количество электричества, проходящее через поперечное сечение проводника за 1 секунду при силе тока в 1 ампер.

У положительного иона отсутствует один электрон, следовательно, он может легко принимать электрон от отрицательно заряженной частицы. Отрицательный ион в свою очередь может быть либо одиночным электроном, либо атомом/молекулой с большим числом электронов. В обоих случаях существует электрон, способный нейтрализовать положительный заряд.



Как генерируется статическое электричество

Основные причины появления статического электричества:

1. Контакт между двумя материалами и их отделение друг от друга (включая трение, намотку/размотку и пр.).
2. Быстрый температурный перепад (например, в момент помещения материала в духовой шкаф).
3. Радиация с высокими значениями энергии, ультрафиолетовое излучение, рентгеновские X-лучи, сильные электрические поля (нерядовые для промышленных производств).
4. Резательные операции (например, на раскроечных станках или бумагорезальных машинах).
5. Электромагнитная индукция (вызванное статическим зарядом возникновение электрического поля).

Поверхностный контакт и разделение материалов, возможно, являются наиболее распространенными причинами возникновения статического электричества на производствах, связанных с обработкой рулонных пленок и листовых пластиков. Статический заряд генерируется в процессе разматывания/наматывания материалов или перемещения друг относительно друга различных слоев материалов. Этот процесс не вполне понятен, но наиболее правдивое объяснение появления статического электричества в данном случае может быть получено проведением аналогии с плоским конденсатором, в котором механическая энергия при разделении пластин преобразуется в электрическую:

Результирующее напряжение = начальное напряжение х (конечное расстояние между пластинами/начальное расстояние между пластинами).

Когда синтетическая пленка касается подающего/приемного вала, невысокий заряд, перетекающий от материала к валу, провоцирует дисбаланс. По мере того, как материал преодолевает зону контакта с валом, напряжение возрастает точно также как в случае с конденсаторными пластинами в момент их разделения. Практика показывает, что амплитуда результирующего напряжения ограничена вследствие электрического пробоя, возникающего в промежутке между соседними материалами, поверхностной проводимости и других факторов. На выходе пленки из контактной зоны часто можно слышать слабое потрескивание или наблюдать искрение. Это происходит в момент, когда статический заряд достигает величины, достаточной для пробоя окружающего воздуха. До контакта с валом синтетическая пленка с точки зрения электричества нейтральна, но в процессе перемещения и контакта с подающими поверхностями поток электронов направляется на пленку и заряжает ее отрицательным зарядом. Если вал металлический и заземленный его положительный заряд быстро стекает.



Большая часть оборудования имеет много валов, поэтому величина заряда и его полярность могут часто меняться. Наилучший способ контроля статического заряда – это его точное определение на участке непосредственно перед проблемной зоной. Если заряд нейтрализован слишком рано, он может восстановиться до того, как пленка достигнет этой проблемной зоны.

В теории возникновение статического заряда может быть проиллюстрировано простой электрической схемой:



C – выполняет функцию конденсатора, который накапливает заряд, как батарея. Это обычно поверхность материала или изделия.
R – сопротивление, способное ослабить заряд материала/механизма (обычно при слабой циркуляции тока). Если материал является проводником, заряд стекает на землю и не создает проблем. Если же материал является изолятором, заряд не сможет стекать, и возникают сложности. Искровой разряд возникает в том случае, когда напряжение накопленного заряда достигает предельного порога.


Токовая нагрузка - заряд, сгенерированный, например, в процессе перемещения пленки по валу. Ток заряда заряжает конденсатор (объект) и повышает его напряжение U. В то время как напряжение повышается, ток течет через сопротивление R. Баланс будет достигнут в момент, когда ток заряда станет равен току, циркулирующему по замкнутому контуру сопротивления. (Закон Ома: U = I х R).


Если объект имеет способность накапливать значительный заряд, и если имеет место высокое напряжение, статическое электричество приводит к возникновению таких серьезных проблем, как искрение, электростатическое отталкивание/притягивание или электропоражение персонала.


Полярность заряда

Статический заряд может быть либо положительным, либо отрицательным. Для разрядников постоянного тока (AC) и пассивных разрядников (щеток) полярность заряда обычно не важна.

Измерение статического заряда

Измерение величины статического заряда является очень важной процедурой, которая позволяет обнаружить присутствие заряда, определить его амплитуду и породивший источник.
Как отмечалось выше, статическое электричество возникает при дефиците или избытке электронов в атоме. Вследствие того, что измерить величину заряда на поверхности объекта в кулонах невозможно, измеряют сопротивление или напряженность электрического поля, связанную со статическим зарядом. Этот способ измерения широко применяется в промышленности.
Зависимость между сопротивлением поля и напряженностью заключается в том, что в любой точке сопротивление является составляющей градиента напряженности.
Измерительные приборы собираются преимущественно по представленной ниже схеме и измеряют напряжение на поверхности объекта.



А – напряжение конденсатора изменяется вместе с изменением величины заряда.

Проводя измерения с расстояния 100 мм, и пользуясь формулой Q (заряд) = С (емкостное сопротивление) х U (напряжение), можно вычислить емкостное сопротивление.

Измерительные приборы обычно просты в использовании и очень полезны для анализа возникших проблем или прогноза их появления в будущем.


При измерениях параметров статического электричества важно следовать инструкциям по эксплуатации приборов. Электрическое поле действует в единственном направлении, поэтому его практическое изучение не представляет сложностей. Одними из наиболее интересных и важных для измерения заряда характеристик электрического поля являются:


Электрическое поле - участок пространства, на котором действуют электрические силы, величины которых выражены в кулонах.
Все заряженные объекты окружены электрическим полем.
Силовые линии поля проходят перпендикулярно поверхности объекта и указывают направление, по которому действует сила.
Электрическое поле может охватывать несколько объектов, что важно учитывать при проведении измерений и осуществлении мероприятий по нейтрализации статического заряда.


Как отмечалось выше, в воздушном пространстве силовые линии электрического поля проходят перпендикулярно поверхности заряженного объекта. Это позволяет производить измерения с очень высокой точностью.



В случае с производством и обработкой синтетической пленки следует отметить важную деталь. Когда материал перемещается по валу, электрический заряд переходит к валу и кажется, что поле исчезло. Поэтому вблизи вала нет возможности производить точные измерения. Электрическое поле появляется вновь, когда материал преодолевает зону контакта и статический заряд можно снова измерить точно.

Проблемы, связанные со статическим электричеством

Существует 4 основные области:

Статический разряд в электронике

На эту проблему необходимо обратить внимание, т.к. она часто возникает в процессе обращения с электронными блоками и компонентами, использующимися в современных контрольно-измерительных устройствах.
В электронике основная опасность, связанная со статическим зарядом, исходит от человека, несущего заряд, и пренебрегать этим нельзя. Ток разряда порождает тепло, которое приводит к разрушению соединений, прерыванию контактов и разрыву дорожек микросхем. Высокое напряжение уничтожает также тонкую оксидную пленку на полевых транзисторах и других элементах, имеющих покрытие.

Часто компоненты не полностью выходят из строя, что можно считать еще более опасным, т.к. неисправность проявляется не сразу, а в непредсказуемый момент в процессе эксплуатации устройства.
Общее правило: при работе с чувствительными к статическому электричеству деталями и устройствами необходимо всегда принимать меры для нейтрализации заряда, накопленного на теле человека. Подробная информация по этому вопросу содержится в документах европейского стандарта CECC 00015.


Электростатическое притяжение/отталкивание

Это, возможно, наиболее широко распространенная проблема, возникающая на предприятиях, связанных с производством и обработкой пластмасс, бумаги, текстиля и в смежных отраслях. Она проявляется в том, что материалы самостоятельно меняют свое поведение - склеиваются между собой или, наоборот, отталкиваются, прилипают к оборудованию, притягивают пыль, неправильно наматываются на приемное устройство и пр.

Притягивание/отталкивание происходит в соответствии с законом Кулона, в основе которого лежит принцип противоположности квадрата. В простой форме он выражается следующим образом:


Сила притяжения или отталкивания (в Ньютонах) = Заряд (А) х Заряд (В) / (Расстояние между объектами ² (в метрах)).


Следовательно, интенсивность проявления этого эффекта напрямую связана с амплитудой статического заряда и расстоянием между притягивающимися или отталкивающимися объектами. Притягивание и отталкивание происходят в направлении силовых линий электрического поля.
Если два заряда имеют одинаковую полярность – они отталкиваются, если противоположную – притягиваются. Если один из объектов заряжен, он будет провоцировать притягивание, создавая зеркальную копию заряда на нейтральных объектах.



Риск возникновения пожара

Риск возникновения пожара не является общей для всех производств проблемой. Но вероятность возгорания очень велика на полиграфических и других предприятиях, где используются легковоспламеняющиеся растворители.
В опасных зонах наиболее распространенными источниками возгорания являются незаземленное оборудование и подвижные проводники. Если на операторе, находящемся в опасной зоне, надета спортивная обувь или туфли на токонепроводящей подошве, существует риск, что его тело будет генерировать заряд, способный спровоцировать возгорание растворителей. Незаземленные проводящие детали машин также представляют опасность. Все, что находится в опасной зоне должно быть хорошо заземлено.

Нижеследующая информация дает краткое пояснение способности статического разряда провоцировать возгорание в легковоспламеняющихся средах.

Способность разряда провоцировать возгорание зависит от многих переменных факторов:

  • типа разряда;
  • мощности разряда;
  • источника разряда;
  • энергии разряда;
  • наличия легковоспламеняющейся среды (растворителей в газовой фазе, пыли или горючих жидкостей);
  • минимальной энергии воспламенения (МЭВ) легковоспламеняющейся среды.
Типы разряда

Существует три основных типа – искровой, кистевой и скользящий кистевой разряды. Коронный разряд в данном случае во внимание не принимается, т. к. он отличается невысокой энергией и происходит достаточно медленно. Коронный разряд чаще всего неопасен, его следует учитывать только в зонах очень высокой пожаро- и взрывоопасности.

Искровой разряд

В основном он исходит от умеренно проводящего, электрически изолированного объекта. Это может быть тело человека, деталь машины или инструмент. Предполагается, что вся энергия заряда рассеивается в момент искрения. Если энергия выше МЭВ паров растворителя, может произойти воспламенение.
Энергия искры рассчитывается следующим образом: Е (в Джоулях) = ½ С U2.

Кистевой разряд

Кистевой разряд возникает, когда заостренные части деталей оборудования концентрируют заряд на поверхностях диэлектрических материалов, изоляционные свойства которых приводят к его накоплению. Кистевой разряд отличается более низкой энергией по сравнению с искровым и, соответственно, представляет меньшую опасность в отношении воспламенения.


Скользящий кистевой разряд

Скользящий кистевой разряд происходит на листовых или рулонных синтетических материалах с высоким удельным сопротивлением, имеющих повышенную плотность заряда и разную полярность зарядов с каждой стороны полотна. Такое явление может быть спровоцировано трением или распылением порошкового покрытия. Эффект сравним с разрядкой плоского конденсатора и может представлять такую же опасность, как искровой разряд.


Источник и энергия разряда

Величина и геометрия распределения заряда являются важными факторами. Чем больше объем тела, тем больше энергии оно содержит. Острые углы повышают мощность поля и поддерживают разряды.


Мощность разряда

Если объект, имеющий энергию, не очень хорошо проводит электрический ток, например, человеческое тело, сопротивление объекта будет ослаблять разряд и понижать опасность. Для человеческого тела существует эмпирическое правило: считать, что любые растворители с внутренней минимальной энергией воспламенения менее 100 мДж могут воспламениться несмотря на то, что энергия, содержащаяся в теле, может быть выше в 2 – 3 раза.


Минимальная энергия воспламенения МЭВ

Минимальная энергия воспламенения растворителей и их концентрация в опасной зоне являются очень важными факторами. Если минимальная энергия воспламенения ниже энергии разряда, возникает риск возгорания.


Электропоражение

Вопросу риска статического удара в условиях промышленного предприятия уделяется все больше внимания. Это связано с существенным повышением требований к гигиене и безопасности труда.
Электропоражение, спровоцированное статическим электричеством, в принципе не представляет особой опасности. Оно просто неприятно и часто вызывает резкую реакцию.
Существуют две общие причины статического удара:


Наведенный заряд

Если человек находится в электрическом поле и держится за заряженный объект, например, за намоточную бобину для пленки, возможно, что его тело зарядится.





Заряд остается в теле оператора, если он находится в обуви на изолирующей подошве, до того момента, пока он не дотронется до заземленного оборудования. Заряд стекает на землю и поражает человека. Такое происходит и в случае, когда оператор дотрагивается до заряженных объектов или материалов – из-за изолирующей обуви заряд накапливается в теле. Когда оператор трогает металлические детали оборудования, заряд может стечь и спровоцировать электроудар.


При перемещении людей по синтетическим ковровым покрытиям порождается статический заряд при контакте между ковром и обувью. Электроудары, которые получают водители, покидая свою машину, провоцируются зарядом, возникшим между сиденьем и их одеждой в момент подъема. Решение этой проблемы – дотронуться до металлической детали автомобиля, например, до рамы дверного проема, до момента подъема с сиденья. Это позволяет заряду безопасно стекать на землю через кузов автомобиля и его шины.


Электропоражение, спровоцированное оборудованием

Такой электроудар возможен, хотя происходит значительно реже, чем поражение, спровоцированное материалом.
Если намоточная бобина имеет значительный заряд, случается, что пальцы оператора концентрируют заряд до такой степени, что он достигает точки пробоя и происходит разряд. Помимо этого, если металлический незаземленный объект находится в электрическом поле, он может зарядиться наведенным зарядом. По причине того, что металлический объект является токопроводящим, подвижный заряд разрядится в человека, который дотрагивается до объекта.


Татьяна Дементьева
инженер-технолог

Статья подготовлена на основе материалов компании Fraser-antistatic (Великобритания)