Гамма телескопы особенности конструкции принцип действия. AXAF - рентгеновский телескоп нового поколения. История рентгеновских телескопов

Часто изобретение первого телескопа приписывают Гансу Липпершлею из Голландии, 1570-1619 годы, однако почти наверняка он не являлся первооткрывателем. Скорее всего, его заслуга в том, что он первый сделал новый прибор телескоп популярным и востребованным. А также именно он подал в 1608 году заявку на патент на пару линз, размещенный в трубке. Он назвал устройство подзорной трубой. Однако его патент был отклонен, поскольку его устройство показалось слишком простым.

Рентгеновский телескоп предназначен для наблюдения удаленных космических объектов в рентгеновском спектре. Обычно телескопы размещают на высотных ракетах или на искусственных спутниках, так как атмосфера Земли является весьма серьезной помехой для рентгеновских лучей.

Американский профессор Рикардо Джиаккони вместе с Бруно Росси в далеком 1960 году опубликовали первую в мире схему настоящего рентгеновского телескопа с фокусирующей зеркальной системой. В чем же состоит принципиальное отличие рентгеновского телескопа от других видов телескопов? Дело в том, что рентгеновские кванты из-за своей большой энергии практически не преломляются в веществе, они поглощаются практически при любых углах падения (кроме самых пологих). Именно поэтому было необходимо, чтобы рентгеновские лучи шли почти параллельно отражающему зеркалу. Такое зеркало представляет собой сужающуюся полую трубку с параболической или гиперболической поверхностью, в которую как раз и входит рентгеновский луч. Телескоп Джиаккони и Росси включал в себя несколько вложенных друг в друга трубковидных зеркал с единой центральной осью для того, чтобы максимально увеличить чувствительность прибора. Подобная схема легла в основу всех современных рентгеновских телескопов.

Современные рентгеновские телескопы работают в диапазоне энергий фотонов рентгеновского излучения от от 0,1 до сотен кэВ. Зеркала подобных телескопов изготавливаются из керамики или металлической фольги (часто используется золото и радий). Критический угол отражения будет зависеть от энергии фотонов.

Основная проблема регистрирования рентгеновских лучей связана с тем, что рентгеновский телескоп облучается мощными потоками заряженных частиц и гамма-фотонов различных энергий, которые регистрируются им наравне с рентгеновскими фотонами. Для решения данной проблемы пользуются методом антисовпадений. Для того чтобы точно определить направление на источник рентгеновского излучения, используют устройство, которое состоит из щелевого коллиматора (набора пластин, которые ограничивают поле зрения) и звёздного датчика (регистрирует прошедший через коллиматор рентгеновский фотон). Возникший импульс тока проходит схему антисовпадений, после чего с помощью специального анализатора определяются энергетические характеристики фотона.


Угловое разрешение подобного телескопа со щелевым коллиматором составляет несколько десятков угловых минут. Также в рентгеновских телескопах могут применяться так называемые модуляционные (качающиеся) коллиматоры (здесь угол разрешения составляет несколько десятков секунд). Подобный коллиматор состоит из двух или более проволочных одномерных сеток, которые устанавливаются между детектором и щелевым коллиматором. Наблюдение производится или в режиме сканирования, или либо вращения относительно оси, перпендикулярной плоскости сеток.

Еще одной более совершенной технологией является методика кодирования апертуры для получения изображений. При использовании данной технологии перед матричным детектором устанавливается маска в виде решетки, обладающей неоднородным пропусканием по всей площади (за счет чередования прозрачных и непрозрачных элементов). Такая конструкция весит гораздо меньше и позволяет получить угловое разрешение менее 1". Примером рентгеновского телескопа является космическая рентгеновская обсерватория «Чандра», запущенная НАСА в 1999 году.

Основное назначение телескопов - собрать как можно больше излучения от небесного тела. Это позволяет видеть неяркие объекты. Во вторую очередь телескопы служат для рассматривания объектов под большим углом или, как говорят, для увеличения. Разрешение мелких деталей – третье предназначение телескопов. Количество собираемого ими света и доступное разрешение деталей сильно зависит от площади главной детали телескопа - его объектива. Объективы бывают зеркальными и линзовыми.

Линзовые телескопы.

Линзы, так или иначе, всегда используются в телескопе. Но в телескопах-рефракторах линзой является главная деталь телескопа – его объектив. Вспомним, что рефракция – это преломление. Линзовый объектив преломляет лучи света, и собирает их в точке, именуемой фокусом объектива. В этой точке строится изображение объекта изучения. Чтобы его рассмотреть используют вторую линзу – окуляр. Она размещается так, чтобы фокусы окуляра и объектива совпадали. Так как зрение у людей разное, то окуляр делают подвижным, чтобы было возможно добиться четкого изображения. Мы это называем настройкой резкости. Все телескопы обладают неприятными особенностями - аберрациями. Аберрации – это искажения, которые получаются при прохождении света через оптическую систему телескопа. Главные аберрации связаны с неидеальностью объектива. Линзовые телескопы (да и телескопы вообще) грешат несколькими аберрациями. Назовем лишь две из них. Первая связана с тем, что лучи разных длин волн преломляются чуть по-разному. Из-за этого для синих лучей существует один фокус, а для красных – другой, расположенный дальше от объектива. Лучи других длин волн собираются каждый в своем месте между этими двумя фокусами. В результате мы видим окрашенные в радугу изображения объектов. Такая аберрация называется хроматической. Второй сильной аберрацией является аберрация сферическая. Она связана с тем, что объектив, поверхностью которого является часть сферы, на самом деле, не собирает все лучи в одной точке. Лучи идущие на разных расстояниях от центра объектива собираются в разных точках, из-за чего изображение получается нечетким. Этой аберрации не было бы, если бы объектив имел поверхность параболоида, но такую деталь сложно изготовить. Чтобы уменьшить аберрации изготавливают сложные, вовсе не двухлинзовые системы. Дополнительные части вводятся для исправления аберраций объектива. Давно держащий первенство среди линзовых телескопов - телескоп Йеркской обсерватории с объективом 102 сантиметра диаметром.

Зеркальные телескопы.

У простых зеркальных телескопов, телескопов-рефлекторов, объектив - это сферическое зеркало, которое собирает световые лучи и отражает их с помощью дополнительного зеркала в сторону окуляра - линзы, в фокусе которой строится изображение. Рефлекс – это отражение. Зеркальные телескопы не грешат хроматической аберрацией, так как свет в объективе не преломляется. Зато у рефлекторов сильнее выражена сферическая аберрация, которая, кстати говоря, сильно ограничивает поле зрения телескопа. В зеркальных телескопах так же используются сложные конструкции, поверхности зеркал, отличные от сферических и прочее.

Зеркальные телескопы изготавливать легче и дешевле. Именно поэтому их производство в последние десятилетия бурно развивается, в то время как новых крупных линзовых телескопов уже очень давно не делают. Самый большой зеркальный телескоп имеет сложный объектив из нескольких зеркал, эквивалентный целому зеркалу диаметром 11 метров. Самый большой монолитный зеркальный объектив имеет размер чуть больше 8-ми метров. Самым большим оптическим телескопом России является 6-ти метровый зеркальный телескоп БТА (Большой Телескоп Азимутальный). Телескоп долгое время был наикрупнейшим в мире.

Характеристики телескопов.

Увеличение телескопа. Увеличение телескопа равно отношению фокусных расстояний объектива и окуляра. Если, скажем, фокусное расстояние объектива два метра, а окуляра – 5 см, то увеличение такого телескопа будет 40 крат. Если поменять окуляр, можно изменить и увеличение. Так астрономы и поступают, ведь не менять же, в самом деле, огромный объектив?!

Выходной зрачок. Изображение, которое строит для глаза окуляр, может в общем случае быть как больше глазного зрачка, так и меньше. Если изображение больше, то часть света в глаз не попадет, тем самым, телескоп будет использоваться не на все 100%. Это изображение называют выходным зрачком и рассчитывают по формуле: p=D:W, где p – выходной зрачок, D – диаметр объектива, а W – увеличение телескопа с данным окуляром. Если принять размер глазного зрачка равным 5 мм, то легко рассчитать минимальное увеличение, которое разумно использовать с данным объективом телескопа. Получим этот предел для объектива в 15 см: 30 крат.

Разрешение телескопов

В виду того что, свет – это волна, а волнам свойственно не только преломление, но и дифракция, никакой даже самый совершенный телескоп не дает изображение точечной звезды в виде точки. Идеальное изображение звезды выглядит в виде диска с несколькими концентрическими (с общим центром) кольцами, которые называют дифракционными. Размером дифракционного диска и ограничивается разрешение телескопа. Все, что закрывает собою этот диск, в данный телескоп никак не увидишь. Угловой размер дифракционного диска в секундах дуги для данного телескопа определяется из простого соотношения: r=14/D, где диаметр D объектива измеряется в сантиметрах. Упомянутый чуть выше пятнадцатисантиметровый телескоп имеет предельное разрешение чуть меньше секунды. Из формулы следует, что разрешение телескопа всецело зависит от диаметра его объектива. Вот еще одна причина строительства как можно более грандиозных телескопов.

Относительное отверстие. Отношение диаметра объектива к его фокусному расстоянию называется относительным отверстием. Этот параметр определяет светосилу телескопа, т. е., грубо говоря, его способность отображать объекты яркими. Объективы с относительным отверстием 1:2 – 1:6 называют светосильными. Их используют для фотографирования слабых по яркости объектов, таких, как туманности.

Телескоп без глаза.

Одной из самых ненадежных деталей телескопа всегда был глаз наблюдателя. У каждого человека - свой глаз, со своими особенностями. Один глаз видит больше, другой - меньше. Каждый глаз по-разному видит цвета. Глаз человека и его память не способны сохранить всю картину, предлагаемую для созерцания телескопом. Поэтому, как только стало возможным, астрономы стали заменять глаз приборами. Если подсоиденить вместо окуляра фотоаппарат, то изображение, получаемое объективом можно запечатлеть на фотопластине или фотопленке. Фотопластина способна накапливать световое излучение, и в этом ее неоспоримое и важное преимущество перед человеческим глазом. Фотографии с большой выдержкой способны отобразить несравненно больше, чем под силу рассмотреть человеку в тот же самый телескоп. Ну и конечно, фотография останется как документ, к которому неоднократно можно будет в последствии обратиться. Еще более современным средством являются ПЗС - камеры с полярно-зарядовой связью. Это светочувствительные микросхемы, которые подменяют собой фотопластину и передают накапливаемую информацию на ЭВМ, после чего могут делать новый снимок. Спектры звезд и других объектов исследуются с помощью присоединенных к телескопу спектрографов и спектрометров. Ни один глаз не способен так четко различать цвета и измерять расстояния между линиями в спектре, как это с легкостью делают названные приборы, которые еще и сохранят изображение спектра и его характеристики для последующих исследований. Наконец, ни один человек не сможет посмотреть одним глазом в два телескопа одновременно. Современные системы из двух и более телескопов, объединенных одной ЭВМ и разнесенных, порой на расстояния в десятки метров, позволяют добиться потрясающе высоких разрешений. Такие системы называют интерферометрами. Пример системы из 4-х телескопов - VLT. Целых четыре вида телескопов мы объединили в один подраздел неслучайно. Земная атмосфера пропускает соответствующие длины электромагнитных волн неохотно, поэтому телескопы для изучения неба в этих диапазонах стремятся вынести в космос. Именно с развитием космонавтики напрямую связано развитие ультрафиолетовой, рентгеновской, гамма и инфракрасной отраслей астрономии.

Радиотелескопы.

В качестве объектива радиотелескопа чаще всего выступает металлическая чаша параболоидной формы. Собранный ею сигнал принимается антенной, находящейся в фокусе объектива. Антенна связана с ЭВМ, которая обычно и обрабатывает всю информацию, строя изображения в условных цветах. Радиотелескоп, как и радиоприемник, способен одновременно принимать только какую-то длину волны. В книге Б. А. Воронцова-Вельяминова «Очерки о Вселенной» есть очень интересная иллюстрация, напрямую связанная с предметом нашего разговора. В одной обсерватории гостям предлагали подойти к столу и взять с него листок бумаги. Человек брал листок и на обороте читал примерно следующее: «Взяв этот листок бумаги, Вы затратили больше энергии, чем приняли все радиотелескопы мира за все время существования радиоастрономии». Если Вы ознакомились с этим разделом (а следовало бы), то Вы, должно быть, помните, что радиоволны обладают самыми большими длинами волн среди всех видов электромагнитного излучения. Это означает, что соответствующие радиоволнам фотоны переносят совсем немного энергии. Чтобы собрать приемлемое количество информации о светилах в радиолучах, астрономы строят огромные по размерам телескопы. Сотни метров – вот тот не столь уже удивительный рубеж для диаметров объективов, который достигнут современной наукой. К счастью, в мире все взаимосвязано. Строительство гигантских радиотелескопов не сопровождается теми же сложностями в обработке поверхности объектива, которые неизбежны при строительстве оптических телескопов. Допустимые погрешности поверхности пропорциональны длине волны, поэтому, порою, металлические чаши радиотелескопов представляют собой не гладкую поверхность, а попросту решетку, и на качестве приема это никак не сказывается. Большая длина волны также позволяет строить грандиозные системы интерферометров. Порой, в таких проектах участвуют телескопы разных континентов. В проектах есть интерферометры космических масштабов. Если они осуществятся, радиоастрономия достигнет невиданных пределов в разрешении небесных объектов. Кроме сбора излучаемой небесными телами энергии, радиотелескопам доступно «подсвечивание» поверхности тел Солнечной системы радиолучами. Сигнал, посланный, скажем с Земли на Луну, отразится от поверхности нашего спутника и будет принят тем же телескопом, что и посылал сигнал. Этот метод исследований называется радиолокацией. С помощью радиолокации можно многое узнать. Впервые астрономы узнали о том, что Меркурий вращается вокруг своей оси именно таким способом. Расстояние до объектов, скорость их движения и вращения, их рельеф, некоторые данные о химическом составе поверхности – вот те немаловажные сведения, которые по силам выяснить радиолокационными методами. Самый грандиозный пример таких исследований – полное картографирование поверхности Венеры, проведенное АМС «Магеллан» на стыке 80-х и 90-х годов. Как Вы, может быть, знаете, эта планета прячет от человеческого глаза свою поверхность за плотной атмосферой. Радиоволны же беспрепятственно проходят сквозь облака. Теперь мы знаем о рельефе Венеры лучше, чем о рельефе Земли (!), ведь на Земле покрывало океанов мешает проводить изучение большей части твердой поверхности нашей планеты. Увы, скорость распространения радиоволн велика, но не безгранична. К тому же, с удаленностью радиотелескопа от объекта возрастает рассеивание посланного и отраженного сигнала. На дистанции Юпитер-Земля сигнал принять уже сложно. Радиолокация – по астрономическим меркам, оружие ближнего боя.

Рентгеновский телескоп-- телескоп, предназначенный для наблюдения удаленных объектов в рентгеновском спектре. Для работы таких телескопов обычно требуется поднять их над атмосферой Земли, непрозрачной для рентгеновских лучей. Поэтому телескопы размещают на высотных ракетах или на ИСЗ.

Оптическая схема

Из-за большой энергии рентгеновские кванты практически не преломляются в веществе (следовательно, тяжело изготовить линзы) и не отражаются при любых углах падения, кроме самых пологих (около 90 градусов).

Рентгеновские телескопы могут использовать несколько методов для фокусирования лучей. Наиболее часто используются телескопы Вольтера (с зеркалами скользящего падения), кодирование апертуры и модуляционные (качающиеся) коллиматоры.

Ограниченные возможности рентгеновской оптики приводят к более узкому полю зрения по сравнению с телескопами, работающими в диапазонах УФ и видимого света.

История

Часто изобретение первого телескопа приписывают Гансу Липпершлею из Голландии, 1570-1619 годы, однако почти наверняка он не являлся первооткрывателем. Скорее всего, его заслуга в том, что он первый сделал новый прибор телескоп популярным и востребованным. А также именно он подал в 1608 году заявку на патент на пару линз, размещенный в трубке. Он назвал устройство подзорной трубой. Однако его патент был отклонен, поскольку его устройство показалось слишком простым.

Задолго до него Томас Диггес, астроном, в 1450 году попытался увеличить звезды с помощью выпуклой линзы и вогнутого зеркала. Однако у него не хватило терпения доработать устройство, и полу-изобретение вскоре было благополучно забыто. Сегодня Диггеса помнят за описание гелиоцентрической системы.

К концу 1609 года небольшие подзорные трубы, благодаря Липпершлею, стали распространены по всей Франции и Италии. В августе 1609 года Томас Харриот доработал и усовершенствовал изобретение, что позволило астрономам рассмотреть кратеры и горы на Луне.

Большой прорыв произошел, когда итальянский математик Галилео Галилей узнал о попытке голландца запатентовать линзовую трубу. Вдохновленный открытием, Галлей решил сделать такой прибор для себя. В августе 1609 года именно Галилео изготовил первый в мире полноценный телескоп. Сначала, это была всего лишь зрительная труба - комбинация очковых линз, сегодня бы ее назвали рефрактор. До Галилео, скорее всего, мало кто догадался использовать на пользу астрономии эту развлекательную трубку. Благодаря прибору, сам Галилей открыл горы и кратеры на Луне, доказал сферичность Луны, открыл четыре спутника Юпитера, кольца Сатурна и сделал множество других полезных открытий.

Сегодняшнему человеку телескоп Галилео не покажется особенным, любой десятилетний ребенок может легко собрать гораздо лучший прибор с использованием современных линз. Но телескоп Галилео был единственным реальным работоспособным телескопом на тот день с 20-кртным увеличением, но с маленьким полем зрения, немного размытым изображением и другими недостатками. Именно Галилео открыл век рефрактора в астрономии - 17 век.

Время и развитие науки позволяло создавать более мощные телескопы, которые давали видеть много больше. Астрономы начали использовать объективы с большим фокусным расстоянием. Сами телескопы превратились в большие неподъемные трубы по размеру и, конечно, были не удобны в использовании. Тогда для них изобрели штативы. Телескопы постепенно улучшали, дорабатывали. Однако его максимальный диаметр не превышал нескольких сантиметров - не удавалось изготавливать линзы большого размера.

К 1656 году Христиан Гюйенс сделал телескоп, увеличивающий в 100 раз наблюдаемые объекты, размер его был более 7 метров, апертура около 150 мм. Этот телескоп уже относят к уровню сегодняшних любительских телескопов для начинающих. К 1670-х годам был построен уже 45-метровый телескоп, который еще больше увеличивал объекты и давал больший угол зрения.

Но даже обычный ветер мог служить препятствием для получения четкого и качественного изображения. Телескоп стал расти в длину. Первооткрыватели, пытаясь выжать максимум из этого прибора, опирались на открытый ими оптический закон - уменьшение хроматической аберрации линзы происходит с увеличением ее фокусного расстояния. Чтобы убрать хроматические помехи, исследователи делали телескопы самой невероятной длины. Эти трубы, которые назвали тогда телескопами, достигали 70 метров в длину и доставляли множество неудобств в работе с ними и настройке их. Недостатки рефракторов заставили великие умы искать решения к улучшению телескопов. Ответ и новый способ был найден: собирание и фокусировке лучей стала производится с помощью вогнутого зеркала. Рефрактор переродился в рефлектор, полностью освободившийся от хроматизма.

Заслуга эта целиком и полностью принадлежит Исааку Ньютону, именно он сумел дать новую жизнь телескопам с помощью зеркала. Его первый рефлектор имел диаметр всего четыре сантиметра. А первое зеркало для телескопа диаметром 30 мм он сделал из сплава меди, олова и мышьяка в 1704 году. Изображение стало четким. Кстати, его первый телескоп до сих пор бережно хранится в астрономическом музее Лондона.

Но еще долгое время оптикам никак не удавалось делать полноценные зеркала для рефлекторов. Годом рождения нового типа телескопа принято считать 1720 год, когда англичане построили первый функциональный рефлектор диаметром в 15 сантиметров. Это был прорыв. В Европе появился спрос на удобоносимые, почти компактные телескопы в два метра длиной. О 40-метровых трубах рефракторов стали забывать.

Двухзеркальная система в телескопе предложена французом Кассегреном. Реализовать свою идею в полной мере Кассегрен не смог из-за отсутствия технической возможности изобретения нужных зеркал, но сегодня его чертежи реализованы. Именно телескопы Ньютона и Кассегрена считаются первыми "современными" телескопами, изобретенными в конце 19 века. Кстати, космический телескоп Хаббл работает как раз по принципу телескопа Кассегрена. А фундаментальный принцип Ньютона с применением одного вогнутого зеркала использовался в Специальной астрофизической обсерватории в России с 1974 года. Расцвет рефракторной астрономии произошел в 19 веке, тогда диаметр ахроматических объективов постепенно рос. Если в 1824 году диаметр был еще 24 сантиметра, то в 1866 году его размер вырос вдвое, в 1885 году диаметр стал составлять 76 сантиметров (Пулковская обсерватория в России), в к 1897 году изобретен иеркский рефрактор. Можно посчитать, что за 75 лет линзовый объектив увеличивался со скоростью одного сантиметра в год.

К концу 18 века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны - дорогие в производстве, а также тускнеющие от времени. К 1758 году с изобретением двух новых сортов стекла: легкого - крон и тяжелого - флинта, появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд, который изготовил двухлинзовый объектив, впоследствии названный доллондовым.

После изобретения ахроматических объективов победа рефрактора была абсолютная, оставалось лишь улучшать линзовые телескопы. О вогнутых зеркалах забыли. Возродить их к жизни удалось руками астрономов-любителей. Вильям Гершель, английский музыкант, в 1781 году открывший планету Уран. Его открытию не было равным в астрономии с глубокой древности. Причем Уран был открыт с помощью небольшого самодельного рефлектора. Успех побудил Гершеля начать изготовление рефлекторов большего размера. Гершель собственноручно в мастерской сплавлял зеркала из меди и олова. Главный труд его жизни - большой телескоп с зеркалом диаметром 122 см. Это диаметр его самого большого телескопа. Открытия не заставили себя ждать, благодаря этому телескопу, Гершель открыл шестой и седьмой спутники планеты Сатурн. Другой, ставший не менее известным, астроном-любитель английский землевладелец лорд Росс изобрел рефлектор с зеркалом с диаметром в 182 сантиметра. Благодаря телескопу, он открыл ряд неизвестных спиральных туманностей. Телескопы Гершеля и Росса обладали множеством недостатков. Объективы из зеркального металла оказались слишком тяжелыми, отражали лишь малую часть падающего на них света и тускнели. Требовался новый совершенный материал для зеркал. Этим материалом оказалось стекло. Французский физик Леон Фуко в 1856 году попробовал вставить в рефлектор зеркалом из посеребренного стекла. И опыт удался. Уже в 90-х годах астроном-любитель из Англии построил рефлектор для фотографических наблюдений со стеклянным зеркалом в 152 сантиметра в диаметре. Очередной прорыв в телескопостроении был очевиден.

Этот прорыв не обошелся без участия русских ученых. Я.В. Брюс прославился разработкой специальных металлических зеркал для телескопов. Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света.

Немецкий оптик Фраунгофер поставил на конвейер производство и качество линз. И сегодня в Тартуской обсерватории стоит телескоп с целой, работающей линзой Фраунгофера. Но рефракторы немецкого оптика также были не без изъяна - хроматизма.

И лишь к концу 19 века изобрели новый метод производства линз. Стеклянные поверхности начали обрабатывать серебряной пленкой, которую наносили на стеклянное зеркало путем воздействия виноградного сахара на соли азотнокислого серебра. Эти принципиально новые линзы отражали до 95% света, в отличие от старинных бронзовых линз, отражавших всего 60% света. Л. Фуко создал рефлекторы с параболическими зеркалами, меняя форму поверхности зеркал. В конце 19 века Кросслей, астроном-любитель, обратил свое внимание на алюминиевые зеркала. Купленное им вогнутое стеклянное параболическое зеркало диаметром 91 см сразу было вставлено в телескоп. Сегодня телескопы с подобными громадными зеркалами устанавливаются в современных обсерваториях. В то время как рост рефрактора замедлился, разработка зеркального телескопа набирала обороты. С 1908 по 1935 года различные обсерватории мира соорудили более полутора десятков рефлекторов с объективом, превышающим иеркский. Самый большой телескоп установлен в обсерватории Моунт-Внльсон, его диаметр 256 сантиметров. И даже этот предел соврем скоро превзойден вдвое. В Калифорнии смонтирован американский рефлектор-гигант, на сегодня его возраст более пятнадцати лет.

Более 30 лет назад в 1976 году ученые СССР построили 6-метровый телескоп БТА - Большой Телескоп Азимутальный. До конца 20 века БРА считался крупнейшим в мире телескопом Изобретатели БТА были новаторами в оригинальных технических решениях, таких как альт-азимутальная установка с компьютерным ведением. Сегодня это новшества применяются практически во всех телескопах-гигантах. В начале 21 века БТА оттеснили во второй десяток крупных телескопов мира. А постепенная деградация зеркала от времени - на сегодня его качество упало на 30% от первоначального - превращает его лишь в исторический памятник науке.

К новому поколению телескопов относятся два больших телескопа 10-метровых близнеца KECK I и KECK II для оптических инфракрасных наблюдений. Они были установлены в 1994 и 1996 году в США. Их собрали благодаря помощи фонда У. Кека, в честь которого они и названы. Он предоставил более 140 000 долларов на их строительство. Эти телескопы размером с восьмиэтажный дом и весом более 300 тонн каждый, но работают они с высочайшей точностью. Принцип работы - главное зеркало диаметром 10 метров, состоящее из 36 шестиугольных сегментов, работающих как одно отражательное зеркало. Установлены эти телескопы в одном из оптимальных на Земле мест для астрономических наблюдений - на Гаваях, на склоне потухшего вулкана Мануа Кеа высотой 4 200 м. К 2002 году эти два телескопа, расположенных на расстоянии 85 м друг от друга, начали работать в режиме интерферометра, давая такое же угловое разрешение, как 85-метровый телескоп. История телескопа прошла долгий путь - от итальянских стекольщиков до современных гигантских телескопов-спутников. Современные крупные обсерватории давно компьютеризированы. Однако любительские телескопы и многие аппараты, типа Хаббл, все еще базируются на принципах работы, изобретенных Галилеем.

Рентгеновские лучи - диапазон электромагнитного излучения с длиной волны от 0,01 до 10 нм, промежуточный между ультрафиолетовым диапазоном и гамма-лучами. Поскольку фотоны этого диапазона обладают большой энергией, они характеризуются высокой ионизирующей и проницающей способностью, что определяет сферу их практического использования. Эти же свойства делают их очень опасными для живых организмов. От рентгеновских лучей, приходящих из космоса, нас защищает земная атмосфера. Однако с точки зрения астрономов они представляют особый интерес, поскольку несут важную информацию о веществе, разогретом до сверхвысоких температур (порядка миллионов кельвинов), и процессах, ведущих к такому разогреву.
Как и в случае с УФ-диапазоном, первые попытки сфотографировать небесную сферу в рентгеновском спектре были сделаны оборудованием, установленным на высотных геофизических ракетах. Главная проблема здесь заключалась в том, что «обычные» методы фокусировки - с помощью линз или вогнутых зеркал - для высокоэнергетических лучей неприемлемы, поэтому приходится применять сложную технологию «скользящего падения». Такие фокусирующие системы имеют значительно большие массы и габариты, чем оптические инструменты, и должны были появиться достаточно мощные ракеты-носители, чтобы рентгеновские телескопы наконец-то вышли на околоземные орбиты.
Первой такой удачной попыткой стал американский спутник Uhuru (Explorer 42), проработавший с 1970 по 1973 г. Заслуживают упоминания также первый голландский космический аппарат ANS (Astronomical Netherlands Satellite), запущенный в августе 1974 г., и две космических обсерватории НЕАО (NASA) - вторая из них, выведенная на орбиту 13 ноября 1978 г., получила имя Альберта Эйнштейна. Япония 21 февраля 1979 г. запустила аппарат «Хакучо» (CORSA-b), наблюдавший «рентгеновское небо» до 1985 г. Свыше восьми лет - с 1993 до 2001 г. - функционировал второй японский высокоэнергетический телескоп ASCA (ASTRO-D). Европейское космическое агентство «отметилось» в этом направлении спутниками EXOSAT (European X-ray Observatory Satellite, 1983-1986) и BeppoSAX (1996-2003). В начале 2012 г. прекращена эксплуатация одного из «космических долгожителей» - орбитального телескопа Rossi X-ray Timing Explorer, запущенного 30 декабря 1995 г.

Третий из «Большой четверки»


Рентгеновский телескоп Chandra, доставленный на орбиту 23 июля 1999 г. на борту многоразового корабля Columbia (миссия STS-93), стал третьей из четырех больших обсерваторий NASA, запущенных в период с 1990 по 2003 г. Название он получил в честь американского физика и астрофизика индийского происхождения Субраманьяна Чандрасекара.

Геоцентрическая орбита с высотой апогея 139 тыс. км и перигеем около 16 тыс. км позволяет проводить непрерывные сеансы наблюдений продолжительностью до 55 часов, что существенно больше по сравнению с аналогичным показателем для низкоорбитальных спутников Земли. Выбор орбиты связан также с тем, что рентгеновское излучение заметно поглощается даже разреженными газами, содержащимися в самых верхних слоях земной атмосферы - на высотах, где работает большинство искусственных спутников. Период обращения составляет 64,2 часа, причем 85% этого времени Chandra проводит вне пределов радиационных поясов Земли. Недостатком такой орбиты является, в частности, невозможность отправки к телескопу ремонтной бригады (как это неоднократно делалось в случае обсерватории Hubble).


ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТЕЛЕСКОПА ЧАНДРА

> Масса: 4620 кг
> Длина: 18 м
> Апертура: 120 см
> Фокусное расстояние: 10 м
> Собирающая площадь зеркал: 1100 см 2
> Область спектральной чувствительности: 0,12-12,5 нм (0,1-10 кэВ)

ОСНОВНЫЕ НАУЧНЫЕ ЗАДАЧИ:

> Исследование черных дыр в центрах галактик
> Поиск и изучение сверхмассивных черных дыр, процессов их образования, эволюции, возможного слияния
> Наблюдение ядер активных галактик, окрестностей сверхмассивных черных дыр
> Изучение нейтронных звезд, рентгеновских пульсаров, остатков сверхновых
> Регистрация рентгеновского излучения тел Солнечной системы
> Изучение областей активного звездообразования, процессов формирования и эволюции скоплений галактик.

КОСМИЧЕСКИЕ ТЕЛЕСКОПЫ

Рентгеновский телескоп имеет довольно узкую специализацию. Он предназначен для наблюдений излучения очень горячих объектов Вселенной - таких, как взрывающиеся звезды, галактические кластеры, вещество в окрестностях черных дыр. Однако он может регистрировать и высокоэнергетическое излучение, возникающее тем или иным образом в атмосферах и на поверхностях различных тел Солнечной системы. Первоначально планировалось, что Chandra проработает в космосе 5 лет, но с учетом хорошего состояния бортовых систем его эксплуатация уже несколько раз продлевалась (последний раз - в 2012 г.).

Первое наблюдение телескопа


Галактические остатки вспышек сверхновых являются источником ценнейшей информации о Вселенной, свидетельством чему могут быть результаты анализа наблюдений телескопа Chandra. В частности, с его помощью была детализирована структура остатка Кассиопея А, создана карта всех входящих и исходящих потоков вещества и ударных волн, пространственно разделены истечения межзвездной и околозвездной материи до момента взрыва Сверхновой, локализованы области ускорения космических лучей. Не менее важными результатом стала надежная регистрация сильных широких линий излучения остатка в режиме спектроскопии сверхвысокого пространственного разрешения и картирование распределения элементов от углерода до железа в выбросах вещества. Определенный из этих наблюдений возраст остатка равен примерно 140 годам, что почти совпадает с оценками, сделанными другими методами. Сравнение возрастов и линейных размеров остатков других сверхновых продемонстрировало способность телескопа Chandra измерять скорость их радиального расширения практически в микромасштабах: например, за 22 года размер остатка Сверхновой SN 1987А в Большом Магеллановом Облаке6 изменился всего лишь на 4 угловых секунды.

Туманность, «подпитываемая» пульсаром


Многие астрономы отмечают, что одним из наиболее впечатляющих достоинств телескопа Chandra является его способность исследовать тонкую структуру так называемых плерионов (Pulsar Wind Nebulae - PWN) - туманностей, «подпитываемых» веществом пульсара, особенностью которых являются чрезвычайно малые размеры - порядка нескольких угловых секунд. Особенно преуспел Chandra в изучении такого объекта в созвездии Паруса - пульсара Vela. На данный момент это наиболее исследованный плерион.

Снимок компактной туманности вокруг пульсара в созвездии Паруса, сделанный телескопом Chandra, демонстрирует интересную структуру, состоящую из двух дугообразных ударных волн. Они образовались при столкновении облака газа, окружающего пульсар, с веществом туманности при его движении сквозь нее. Джеты, испускаемые пульсаром, видны как яркие прямые отрезки, перпендикулярные дугам. Их направление практически совпадает с направлением движения сверхплотного объекта. Считается, что они возникают благодаря его вращению, а также взаимодействию вещества с мощными электрическими и магнитными полями в его окрестностях.


Изменения формы и яркости джетов.
КОСМИЧЕСКИЕ ТЕЛЕСКОПЫ

Повторное фотографирование пульсара Vela рентгеновской обсерваторией Chandra выявило заметные изменения формы и яркости джетов на сравнительно коротких отрезках времени. Здесь представлено четыре из 13 его изображений, полученных на протяжении двух с половиной лет. Длина джетов достигает половины светового года (около 5 трлн км), а их ширина остается практически постоянной на всем протяжении и не превышает 200 млрд км, что можно объяснить наличием в них «удерживающего» магнитного поля. Скорость выбрасываемого пульсаром вещества равна почти половине скорости света. В таких релятивистских потоках заряженных частиц должны возникать нестабильности, уже наблюдавшиеся в экспериментах на специальных ускорителях. Теперь их удалось зарегистрировать на примере реального астрофизического объекта. Рентгеновское излучение в данном случае возникает при взаимодействии сверхбыстрых электронов и позитронов с магнитными силовыми линиями.
Похожую нестабильность ученые ожидают обнаружить у джетов, испускаемых сверхмассивными черными дырами в центрах галактик, однако ее временной масштаб должен быть гораздо большим (порядка сотен и тысяч лет).
Крабовидная туманность (Ml) - остаток одной из ярчайших вспышек Сверхновой в истории человечества, наблюдавшейся в 1054 г. Информация о ней содержится в японских, китайских, а также некоторых арабских хрониках.
1. Молодые солнцеподобные звезды. Длительные наблюдения звездных скоплений в Туманности Ориона (М42) показали, что молодые звезды солнечных масс, имеющие возраст от 1 до 10 млн лет, демонстрируют крупномасштабную вспышечную активность, особенно заметную в рентгеновском диапазоне, при этом частота вспышек и их энергетика почти на порядок превосходит процессы подобного рода, наблюдающиеся на нашем Солнце, возраст которого близок к 4,6 млрд лет. Это может существенно влиять на формирование планет и зон обитаемости вокруг таких звезд.
2. Сверхновые и остатки сверхновых. Изображения и спектры сверхновых, полученные телескопом Chandra, позволили изучить динамику ударных волн, генерируемых взрывами массивных звезд а также механизмы ускорения электронов и протонов до околосвето-вых скоростей, определить количество и распределение тяжелых элементов, образующихся при вспышках, и исследовать механизмы самих вспышек.
3. Кольца вокруг пульсаров и джеты. Полученные телескопом Chandra изображения Крабовидной туманности и других остатков сверхновых демонстрируют изумительной красоты кольца и джеты - выбросы высокоэнергетических частиц, испускаемых быстровращающимися нейтронными звездами. Это свидетельствует о том, что они могут служить мощными генераторами таких частиц.
4. Черные дыры звездных масс. Открытие двух черных дыр (ЧД), массы которых превышают 15 масс Солнца, послужило отправным пунктом для пересмотра представлений о возможных механизмах их эволюции.
5. Стрелец А* - черная дыра в центре Млечного пути. Телескоп Chandra измерил энергетический выход и темпы уменьшения количества вещества в радиоисточнике Sagittarius А* - сверхмассивной черной дыре, расположенной в центре нашей Галактики (в направлении созвездия Стрельца). Эти данные позволили астрономам сделать вывод, что современный низкий уровень ее активности не является прямым следствием отсутствия запасов «топлива» в ее окрестностях.
6. Двойные черные дыры. В одной галактике Chandra открыл две сверхмассивных черных дыры, которые, по расчетам, вскоре сольются. Не исключено, что именно таким образом растут ЧД в центрах галактик.
7. Черные дыры, выбрасывающие вещество. Полученные телескопом Chandra изображения скоплении галактик предоставляют наблюдателям драматические свидетельства долговременной повторяющейся взрывной активности, связанной с вращающимися сверхмассивными ЧД. Эта активность имеет следствием высокоэффективную конверсию гравитационной энергии выпадающего на ЧД вещества в потоки высокоэнергетических частиц. Таким образом, черные дыры из «поглотителей» становятся мощными источниками энергии, за счет чего играют ключевую роль в эволюции массивных галактик.
8. «Перепись» черных дыр. При обработке результатов наблюдений в рамках программы Chandra Deep Field были открыты сотни сверхмассивных ЧД, аккреционные диски в окрестностях которых при вращении испускают рентгеновские лучи. Существованием этих источников можно объяснить практически все диффузное рентгеновское «сияние» неба, обнаруженное более 40 лет назад и лишь в наши дни получившее адекватное объяснение. «Перепись» сверхмассивных ЧД дает представление о времени формирования этих объектов и об их эволюции. Специалисты также говорят о возможном открытии так называемых «черных дыр промежуточных масс» - фактически новой категории объектов этого класса.
9. Темная материя. Результаты наблюдений скопления «Пуля» и ряда других галактических скоплений, проведенных телескопом Chandra совместно с несколькими оптическими телескопами, стали бесспорным доказательством того, что большая часть вещества во Вселенной пребывает в форме темной материи. Ее наличие проявляется посредством гравитационного воздействия на «нормальную» материю - электроны, протоны и нейтроны, из которых состоят «привычные» атомы. Однако прямое детектирование этой компоненты мироздания не представляется возможным (по крайней мере, в наше время). Проведенные обзорные исследования многих скоплений галактик подтвердили, что Вселенная содержит в пять раз больше темной материи, нежели «обычной».
10. Темная энергия. Полученные телескопом Chandra наблюдательные данные о скорости роста скоплений галактик показали, что расширение Вселенной ускоряется - главным образом по причине преобладания в пространстве субстанции, получившей название «темная энергия». Это независимое подтверждение открытия, сделанного благодаря анализу оптических наблюдений удаленных сверхновых, исключает любые альтернативы Общей Теории Относительности и ужесточает ограничения на природу темной энергии.
Из других научных достижений наиболее успешного рентгеновского телескопа необходимо отметить проведение детальных спектральных исследований активности сверхмассивных черных дыр в центрах галактик (в том числе обнаружение сверхмассивных ЧД вдвое более активных по сравнению с более ранними оценками), новые данные о процессах формирования скоплений галактик и их эволюции, а также создание общего каталога Chandra Source Catalog (CSC), содержащего свыше 250 тыс. рентгеновских источников на 1% общей площади неба и использующего данные 10 тыс. отдельных наблюдений множества источников различных типов (звезд в непосредственной близости к центру Млечного Пути, галактических и внегалактических рентгеновских двойных, ядер активных галактик и пр.).
ТОП-10 НАУЧНЫХ ДОСТИЖЕНИЙ ЧАНДРА

Через 900 с лишним лет после вспышки яркой Сверхновой в созвездии Тельца на ее месте видна расширяющаяся газовая туманность, в центре которой находится сверхплотная нейтронная звезда - пульсар. Он продолжает излучать энергию и испускать потоки высокоэнергетических частиц. Несмотря на то, что увидеть его можно только в большие телескопы, суммарное энерговыделение этого объекта в 100 тыс. раз превосходит мощность излучения Солнца.
Высокоэнергетические электроны, испускающие рентгеновские лучи, теряют энергию быстрее и не успевают «отлететь» далеко от центра туманности, откуда они были выброшены, поэтому видимый размер области излучающей в более длинноволновом диапазоне, значительно больше плериона, сфотографированного телескопом Chandra.



Мониторинг Крабовидной туманности наземными и космическими инструментами ведется практически постоянно, за исключением периодов времени, когда недалеко от нее на небе находится Солнце. Этот объект без преувеличения можно назвать одной из самых изученных небесных «достопримечательностей».

Полеты космических аппаратов открыли перед астрономами невиданные ранее возможности, которыми наземная астрономия никогда не располагала, да и не могла располагать. Для изучения небесных тел Солнечной системы, нашей Галактики и многочисленных внегалактических объектов теперь в космос запускаются специализированные астрономические станции-обсерватории, оснащенные новейшими физическими приборами. Они улавливают невидимые излучения, которые поглощаются атмосферой и не достигают земной поверхности. В результате стали доступны для исследований все виды электромагнитного излучения, приходящего из космических глубин. Образно говоря, если раньше мы наблюдали Вселенную как бы в одном, черно-белом цвете, то сегодня она представляется нам во всех "цветах" электромагнитного спектра. Но чтобы принимать невидимые излучения, нужны особые телескопы. Каким же образом и с помощью чего можно поймать и исследовать лучи-невидимки?

При слове "телескоп" у каждого возникает представление об астрономической трубе с линзами или зеркалами, то есть представление об оптике. Ведь до недавнего времени небесные объекты изучали исключительно с помощью оптических инструментов. Но для улавливания невидимых излучений, которые сильно отличаются от видимого глазом света, нужны особые приемные устройства. И совсем не обязательно, чтобы своим внешним видом они напоминали привычный нам телескоп.

Приемники коротковолновых излучений совершенно не похожи на оптические телескопы. И если мы говорим, например, "рентгеновский телескоп" или "гамма-телескоп" , то под такими названиями следует понимать: приемник рентгеновского излучения или приемник гамма-квантов.

Вся трудность приема коротковолнового излучения заключается в том, что для электромагнитного излучения с длиной волны, меньшей 0,2 микрона обычные преломляющие (линзовые) и отражательные (зеркальные) системы совершенно не пригодны.

Так, рентгеновские лучи и особенно гамма-кванты настолько энергичны, что они запросто "пробивают" линзы, изготовленные из любых материалов: первоначальное направление движения этих лучей и квантов не меняется. Иными словами, их нельзя сфокусировать! Но как тогда их исследовать? Как сконструировать для них телескоп?

На языке физиков коротковолновое излучение - жесткое излучение! А это значит, что фотоны рентгеновских и гамма-лучей по своим свойствам похожи на высокоэнергичные частицы космических лучей (альфа-частицы, протоны), приходящие к Земле из глубин космоса. Но тогда для регистрации жестких квантов, возможно, будут пригодны счетчики частиц, какими пользуются для изучения космических лучей? Именно подобные счетчики используются в качестве приемного устройства в рентгеновских и гамма-телескопах. Чтобы узнать, откуда приходит рентгеновское излучение, счетчик заключают в массивный металлический тубус. А если счетчик покрывать еще пленками различного состава, то тогда разные счетчики будут принимать кванты различной жесткости. Получается своеобразный рентгеновский спектрограф, позволяющий выявить состав рентгеновского излучения.

Но такой телескоп еще весьма несовершенен. Главный его недостаток - слишком малая разрешающая способность. Счетчик отмечает излучение, попадающее в тубус. А оно поступает с нескольких квадратных градусов неба, где в обычный телескоп видны тысячи звезд. Какие из них излучают рентгеновские лучи? Узнать это удается не всегда. И все же с помощью рентгеновских и гамма-телескопов, работающих на космических орбитальных станциях, уже сегодня добыто много интереснейших сведений об источниках невидимого коротковолнового излучения.

Одним из таких источников является наше Солнце. Еще в 1948 году с помощью фотопластинок, поднятых ракетой "Фау-2" на высоту около 160 км (США, Морская лаборатория), было открыто рентгеновское излучение великого светила. А в 1962 году, заменив фотопластинку счетчиком Гейгера, астрономы обнаружили второй рентгеновский источник уже далеко за пределами Солнечной системы. Это ярчайший рентгеновский источник в созвездии Скорпиона, получивший название Скорпион Х-1. Третьим объектом рентгеновской астрономии в 1963 году стала знаменитая Крабовидная туманность в созвездии Тельца - Телец Х-1.

Наиболее важным этапом в развитии рентгеновской астрономии были запуски первого в мире американского рентгеновского спутника "Ухуру" в 1970 году и первого рентгеновского телескопа-рефлектора "Эйнштейн" в 1978 году. С их помощью были открыты рентгеновские двойные звезды, рентгеновские пульсары, активные ядра галактик и другие источники рентгеновского излучения.

К настоящему моменту на звездном небе известны тысячи источников рентгеновского излучения. Вообще же рентгеновским телескопам доступно около миллиона таких источников, то есть столько, сколько лучшим радиотелескопам. Как же выглядит рентгеновское небо?

В рентгеновских лучах Вселенная представляется совершенно иной, чем она видна в оптические телескопы. С одной стороны, наблюдается увеличение концентрации ярких источников излучения по мере приближения к средней плоскости Млечного Пути - они принадлежат нашей Галактике. С другой - равномерное распределение многочисленных внегалактических рентгеновских источников по всему небу. Многие небесные тела, украшающие небо Земли,- Луна и планеты - в рентгеновских лучах не видны.

Гамма-астрономия тоже родилась вместе с ракетной техникой. Как известно, космическое гамма-излучение возникает вследствие физических процессов, в которых участвуют частицы высоких энергий,- процессов, происходящих внутри атомных ядер. Однако самым интенсивным источником гамма-квантов является процесс аннигиляции , то есть взаимодействия частиц и античастиц (например, электронов и позитронов), сопровождающийся превращением материи (частиц) в жесткое излучение. Следовательно, изучая гамма-кванты, астрофизик может стать однажды свидетелем взаимодействия с телами нашего обычного мира тел теоретически возможного антимира , состоящих исключительно из антивещества .

В нашей Галактике диффузное (рассеянное) гамма-излучение сосредоточено главным образом в галактическом диске; оно усиливается в направлении к центру Галактики. Кроме того, обнаружены дискретные (точечные) гамма-источники, такие как Краб (Крабовидная туманность в Тельце), Геркулес Х-1, Геминга (в созвездии Близнецов) и некоторые другие. Сотни дискретных источников внегалактического гамма-излучения разбросаны буквально по всему небу. Удалось принять гамма-излучение, исходящее из активных областей Солнца во время солнечных вспышек.

На границе с видимым спектром, слева от фиолетовых лучей, располагается невидимое ультрафиолетовое излучение . Начиная с волны 0,29 микрона земная атмосфера полностью поглощает космический ультрафиолет, пожалуй, "на самом интересном месте"...

С началом космических исследований стали проводиться наблюдения также в ультрафиолетовом интервале длин волн. 23 марта 1983 года в нашей стране на высокоэллиптическую околоземную орбиту (высота в перигее 2000 км, в апогее 200 тыс. км) была запущена астрономическая станция "Астрон". Это была первая отечественная станция, снабженная аппаратурой для рентгеновских и ультрафиолетовых наблюдений.

Теперь приборы, фиксирующие ультрафиолетовые лучи, устанавливают на многих космических аппаратах. И если бы мы могли посмотреть на звездное небо через "ультрафиолетовые очки", то оно стало бы для нас совершенно неузнаваемым, как, впрочем, и в других невидимых лучах спектра. Так, например, для жителей Северного полушария Земли особенно выделялась бы на небе звезда дзета Ориона - самое левое светило в его "поясе". Необычно яркими выглядели бы и некоторые другие звезды, особенно горячие.

Удивляет то, что на ультрафиолетовом небе много огромных, яркосветящихся туманностей. Знаменитая туманность Ориона, которую в виде крохотного туманного пятнышка с трудом различает глаз, заняла бы все созвездие "небесного охотника". Исполинская ультрафиолетовая туманность окутывает главную звезду созвездия Девы - сияющую Спику. Эта туманность очень яркая и почти круглая. Ее видимый поперечник примерно в 50 раз больше видимого диаметра полной Луны. А вот сама Спика простым глазом не видна: ее ультрафиолетовое излучение оказалось очень слабым.

В диапазоне волн длиной от 22 микронов до 1 мм (справа от красных лучей видимого спектра) земная атмосфера сильно поглощает инфракрасное (тепловое) излучение небесных тел. К тому же воздух сам является источником тепловых лучей, что мешает наблюдениям в инфракрасном интервале длин волн. Обойти эти препятствия удалось лишь тогда, когда приемники инфракрасного излучения стали размещать за пределами атмосферы - на космических аппаратах.

Инфракрасная техника позволила получить точнейшие данные о рельефе планет, приоткрыла перед исследователями Вселенной пылевую завесу, скрывавшую от людских взоров ядро нашей Галактики, помогла астрофизикам заглянуть в звездные "колыбели" - газопылевые туманности и "прикоснуться", к тайнам рождения звезд.

Таким образом, вынос астрофизических приборов в космос открыл перед астрономией новые горизонты: стала создаваться ультрафиолетовая, рентгеновская и инфракрасная астрономия, а в 70-х годах начались наблюдения в гамма-диапазоне. Сегодня исследователи Вселенной имеют возможность совершать обзор неба практически во всем диапазоне электромагнитного спектра - от сверхкоротких гамма-лучей до сверхдлинных радиоволн. Астрономия стала наукой всеволновой. Собранная с космических "полей" богатая научная "жатва" вызвала настоящий переворот в астрофизике и переосмысление наших представлений о Большой Вселенной.